Attached and Attaching Three-Dimensional Jets From Circular Nozzles: Analytical Model

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Leonard F. Pease ◽  
Judith Ann Bamberger ◽  
Michael J. Minette

Abstract Here we consider velocity profiles of three dimensional attaching and attached jets emerging from circular nozzles. Like their well-studied two-dimensional counterparts, these wall jets lose momentum due to interactions with nearby surfaces. Unlike their two-dimensional counterparts, simple and quantitative expressions for the velocity profiles of three-dimensional wall jets remain elusive. Here we present a quantitative analytical model of the three-dimensional velocity profiles of attached jets inclusive of a local skin coefficient of friction. We compare these expressions to experimental velocity profiles at moderate and high nozzle Reynolds numbers to find reasonable quantitative agreement. This work has implications for a variety of industries including nuclear waste processing, where jet flows in mixing vessels suspend solids and gases trapped in radioactive waste tanks.

2004 ◽  
Vol 126 (3) ◽  
pp. 362-374 ◽  
Author(s):  
G. Biswas ◽  
M. Breuer ◽  
F. Durst

This paper is concerned with the behavior of flows over a backward-facing step geometry for various expansion ratios H/h=1.9423, 2.5 and 3.0. A literature survey was carried out and it was found that the flow shows a strong two-dimensional behavior, on the plane of symmetry, for Reynolds numbers ReD=ρUbD/μ below approximately 400 (Ub=bulk velocity and D=hydraulic diameter). In this Reynolds number range, two-dimensional predictions were carried out to provide information on the general integral properties of backward-facing step flows, on mean velocity distributions and streamlines. Information on characteristic flow patterns is provided for a wide Reynolds number range, 10−4⩽ReD⩽800. In the limiting case of ReD→0, a sequence of Moffatt eddies of decreasing size and intensity is verified to exist in the concave corner also at ReD=1. The irreversible pressure losses are determined for various Reynolds numbers as a function of the expansion ratio. The two-dimensional simulations are known to underpredict the primary reattachment length for Reynolds numbers beyond which the actual flow is observed to be three-dimensional. The spatial evolution of jet-like flows in both the streamwise and the spanwise direction and transition to three-dimensionality were studied at a Reynolds number ReD=648. This three-dimensional analysis with the same geometry and flow conditions as reported by Armaly et al. (1983) reveals the formation of wall jets at the side wall within the separating shear layer. The wall jets formed by the spanwise component of the velocity move towards the symmetry plane of the channel. A self-similar wall-jet profile emerges at different spanwise locations starting with the vicinity of the side wall. These results complement information on backward-facing step flows that is available in the literature.


2010 ◽  
Vol 656 ◽  
pp. 116-146 ◽  
Author(s):  
KEKE ZHANG ◽  
DALI KONG ◽  
XINHAO LIAO

We consider a viscous, incompressible fluid confined in a narrow annular channel rotating rapidly about its axis of symmetry with angular velocity Ω that itself precesses slowly about an axis fixed in an inertial frame. The precessional problem is characterized by three parameters: the Ekman number E, the Poincaré number ε and the aspect ratio of the channel Γ. Dependent upon the size of Γ, precessionally driven flows can be either resonant or non-resonant with the Poincaré forcing. By assuming that it is the viscous effect, rather than the nonlinear effect, that plays an essential role at exact resonance, two asymptotic expressions for ε ≪ 1 and E ≪ 1 describing the single and double inertial-mode resonance are derived under the non-slip boundary condition. An asymptotic expression describing non-resonant precessing flows is also derived. Further studies based on numerical integrations, including two-dimensional linear analysis and direct three-dimensional nonlinear simulation, show a satisfactory quantitative agreement between the three asymptotic expressions and the fuller numerics for small and moderate Reynolds numbers at an asymptotically small E. The transition from two-dimensional precessing flow to three-dimensional small-scale turbulence for large Reynolds numbers is also investigated.


Author(s):  
Leonard F. Pease ◽  
Judith Ann Bamberger

Abstract Free jets have been studied in detail over much of the last century, but the theory for offset and attached jets remains incomplete. Attached jets differ from free jets in that they lose momentum to nearby surfaces, attenuating their velocities. The velocity profiles of free circular jets are nearly Gaussian, with quantitative mathematical descriptions derived from first principles by Goertler and Tollmien (Rajaratnam, 1976). In contrast, mathematical descriptions of three-dimensional attached jets from circular nozzles remain much less mature. Agelin-Chaab and Tachie (2011) used particle imaging velocimetry of a three-dimensional attached jet to show that the scaled velocity decays with scaled distance from the nozzle with a power law exponent between −1.15 and −1.20, which is larger in magnitude than that of a free jet. However, quantitative analytical expressions for the velocity profiles of attached jets similar to those of free jets remain elusive. This paper addresses this critical gap. Here we evaluate the velocity profiles of three-dimensional offset jets emerging from circular nozzles that become attached jets. These jets lose momentum due to interactions with nearby surfaces and are important to evaluating flows in mixing vessels and to suspending solids and trapped gases in radioactive waste tanks. Despite the importance of attached jets, prior insight has been purely experimental, limited to overly simplistic analytical models, or restricted to computationally expensive computational fluid dynamics case studies. We compare the expression of Verhoff (1963) to experimental results to find reasonable quantitative agreement. As stated by Agelin-Chaab and Tachie (2011), “detailed velocity measurements of 3D offset jets are rare.” Such remains the case. This study adds to the literature by providing information at two additional Reynolds numbers (1.43 · 106 and 1.87 · 106) and evaluating simple but accurate expressions for velocity profiles. These Reynolds numbers and corresponding velocities are higher, typically orders of magnitude higher, than other reports. The semi-empirical stream wise velocity profile perpendicular to the surface proposed by Verhoff (1963) is in approximate agreement with these velocity profiles, which is surprising because these attached jets are three-dimensional instead of two-dimensional as evaluated by Verhoff. However, additional work is necessary to fully describe these profiles quantitatively.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


2017 ◽  
Vol 825 ◽  
pp. 631-650 ◽  
Author(s):  
Francesco Romanò ◽  
Arash Hajisharifi ◽  
Hendrik C. Kuhlmann

The topology of the incompressible steady three-dimensional flow in a partially filled cylindrical rotating drum, infinitely extended along its axis, is investigated numerically for a ratio of pool depth to radius of 0.2. In the limit of vanishing Froude and capillary numbers, the liquid–gas interface remains flat and the two-dimensional flow becomes unstable to steady three-dimensional convection cells. The Lagrangian transport in the cellular flow is organised by periodic spiralling-in and spiralling-out saddle foci, and by saddle limit cycles. Chaotic advection is caused by a breakup of a degenerate heteroclinic connection between the two saddle foci when the flow becomes three-dimensional. On increasing the Reynolds number, chaotic streamlines invade the cells from the cell boundary and from the interior along the broken heteroclinic connection. This trend is made evident by computing the Kolmogorov–Arnold–Moser tori for five supercritical Reynolds numbers.


2011 ◽  
Vol 681 ◽  
pp. 411-433 ◽  
Author(s):  
HEMANT K. CHAURASIA ◽  
MARK C. THOMPSON

A detailed numerical study of the separating and reattaching flow over a square leading-edge plate is presented, examining the instability modes governing transition from two- to three-dimensional flow. Under the influence of background noise, experiments show that the transition scenario typically is incompletely described by either global stability analysis or the transient growth of dominant optimal perturbation modes. Instead two-dimensional transition effectively can be triggered by the convective Kelvin–Helmholtz (KH) shear-layer instability; although it may be possible that this could be described alternatively in terms of higher-order optimal perturbation modes. At least in some experiments, observed transition occurs by either: (i) KH vortices shedding downstream directly and then almost immediately undergoing three-dimensional transition or (ii) at higher Reynolds numbers, larger vortical structures are shed that are also three-dimensionally unstable. These two paths lead to distinctly different three-dimensional arrangements of vortical flow structures. This paper focuses on the mechanisms underlying these three-dimensional transitions. Floquet analysis of weakly periodically forced flow, mimicking the observed two-dimensional quasi-periodic base flow, indicates that the two-dimensional vortex rollers shed from the recirculation region become globally three-dimensionally unstable at a Reynolds number of approximately 380. This transition Reynolds number and the predicted wavelength and flow symmetries match well with those of the experiments. The instability appears to be elliptical in nature with the perturbation field mainly restricted to the cores of the shed rollers and showing the spatial vorticity distribution expected for that instability type. Indeed an estimate of the theoretical predicted wavelength is also a good match to the prediction from Floquet analysis and theoretical estimates indicate the growth rate is positive. Fully three-dimensional simulations are also undertaken to explore the nonlinear development of the three-dimensional instability. These show the development of the characteristic upright hairpins observed in the experimental dye visualisations. The three-dimensional instability that manifests at lower Reynolds numbers is shown to be consistent with an elliptic instability of the KH shear-layer vortices in both symmetry and spanwise wavelength.


1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


A phenomenon of boundary-layer instability is discussed from the theoretical and experimental points of view. The china-clay evaporation technique shows streaks on the surface, denoting a vortex system generated in the region of flow upstream of transition. Experiments on a swept wing are described briefly, while experiments on the flow due to a rotating disk receive much greater attention. In the latter case, the axes of the disturbance vortices take the form of equi-angular spirals, bounded by radii of instability and of transition. A frequency analysis of the disturbances shows that there is a narrow band of disturbance components of high amplitude, some frequencies within this band corresponding to disturbances fixed relative to the surface and others corresponding to moving waves. Furthermore, the determination of velocity profiles for the rotating-disk flow is described, the agreement with the theoretical solution for laminar flow being quite satisfactory; for turbulent flow, however, the empirical theories are not very satisfactory. In order to explain the vortex phenomenon just discussed, the general equations of motion in orthogonal curvilinear co-ordinates are examined by superimposing an infinitesimal disturbance periodic in space and time on the main flow, and linearizing for small disturbances. An important result is that, within the range of certain approximations, the velocity component in the direction of propagation of the disturbance may be regarded as a two-dimensional flow for stability purposes; then the problem of stability formally resembles the well-known two dimensional problem. However, it is important to emphasize that this result—namely, that the flow curvature has little influence on stability—is applicable only to the possible modes of instability in a local region. The nature of three-dimensional flows is discussed, and the importance of co-ordinates along and normal to the stream-lines outside the boundary layer is examined. In accord with the formal two-dimensional nature of the instability, there is a whole class of velocity distributions, corresponding to different directions, which may exhibit instability. The question of stability at infinite Reynolds number is examined in detail for these profiles. As for ordinary two-dimensional flows, the wave velocity of the disturbance must lie somewhere between the maximum and minimum of the velocity profile considered. The points where the wave velocity equals the fluid velocity are called critical points, of which most of the profiles considered have two. Then Tollmien’s criterion that velocity profiles with a point of inflexion are unstable at infinite Reynolds number is extended to the case of profiles with two critical points. One particular profile—namely, that for which the point of inflexion lies at the point of zero velocity—may generate neutral disturbances of zero phase velocity, corresponding to the disturbances visualized by the china-clay technique. A variational method for the solution of certain of the eigenvalue problems associated with stability at infinite Reynolds number is derived, found by comparison with an exact solution to be very accurate, and applied to the rotating disk. The fixed vortices predicted by the theory have as their axes equi-angular spirals of angle 103°, in good agreement with experiment, but the agreement between theoretical and experimental wave number is not good, the discrepancy being attributed to viscosity. Finally, the correlation between the experimentally observed and theoretically possible disturbances is discussed and certain conclusions drawn therefrom. The streamlines of the disturbed boundary layer show the existence of a double row of vortices, one row of which produces the streaks in the china clay. Application of the theory to other physical phenomena is described.


1982 ◽  
Vol 104 (2) ◽  
pp. 214-220 ◽  
Author(s):  
S. E. Hurlbut ◽  
M. L. Spaulding ◽  
F. M. White

A finite difference model is presented for viscous two dimensional flow of a uniform stream past an oscillating cylinder. A noninertial coordinate transformation is used so that the grid mesh remains fixed relative to the accelerating cylinder. Three types of cylinder motion are considered: oscillation in a still fluid, oscillation parallel to a moving stream, and oscillation transverse to a moving stream. Computations are made for Reynolds numbers between 1 and 100 and amplitude-to-diameter ratios from 0.1 to 2.0. The computed results correctly predict the lock-in or wake-capture phenomenon which occurs when cylinder oscillation is near the natural vortex shedding frequency. Drag, lift, and inertia effects are extracted from the numerical results. Detailed computations at a Reynolds number of 80 are shown to be in quantitative agreement with available experimental data for oscillating cylinders.


1986 ◽  
Vol 20 (5) ◽  
pp. 668-679
Author(s):  
S. Ya. Gertsenshtein ◽  
I. I. Olaru ◽  
A. Ya. Hudnitokii ◽  
A. N. Sukhorukov

Sign in / Sign up

Export Citation Format

Share Document