Recent Developments in the Design of Vertical Borehole Ground Heat Exchangers for Cost Reduction and Thermal Energy Storage

2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Xiaobing Liu ◽  
Jeffrey D. Spitler ◽  
Ming Qu ◽  
Liang Shi

Abstract Ground source (geothermal) heat pumps (GSHPs) can meet the thermal demands of buildings in an energy-efficient manner. The current high installation costs and long payback period limit the attractiveness of GSHP installation in the United States. Vertical borehole ground heat exchangers (VBGHEs), which are commonly used in GSHP systems, contribute most to the cost premium of GSHPs. Reducing the cost of VBGHEs could help increase market penetration of GSHP systems. This paper reviews recent developments for VBGHEs, including improvements in borehole heat transfer and borehole field layout, integration with thermal energy storage, and new design tools. Improvements in the borehole design and materials are more likely to be justified when the ground has high thermal conductivity. Integrating thermal energy storage can provide additional value to the GSHP system, especially when flexible electric demand at buildings becomes more valuable. Advanced design tools for VBGHEs that account for the thermal response of irregularly shaped borehole fields and that are more closely integrated with whole-building energy simulation programs may facilitate more innovations and optimization of GSHP system designs.

Author(s):  
Muneesh Sethi ◽  
R.K. Tripathi ◽  
Birajashis Pattnaik ◽  
Sushil Kumar ◽  
Rohit Khargotra ◽  
...  

2018 ◽  
Vol 94 ◽  
pp. 576-586 ◽  
Author(s):  
Frédéric Kuznik ◽  
Kevyn Johannes ◽  
Christian Obrecht ◽  
Damien David

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4840
Author(s):  
Ewelina Radomska ◽  
Lukasz Mika ◽  
Karol Sztekler ◽  
Lukasz Lis

An application of latent heat thermal energy storage systems with phase change materials seems to be unavoidable in the present world. The latent heat thermal energy storage systems allow for storing excessive heat during low demand and then releasing it during peak demand. However, a phase change material is only one of the components of a latent heat thermal energy storage system. The second part of the latent heat thermal energy storage is a heat exchanger that allows heat transfer between a heat transfer fluid and a phase change material. Thus, the main aim of this review paper is to present and systematize knowledge about the heat exchangers used in the latent heat thermal energy storage systems. Furthermore, the operating parameters influencing the phase change time of phase change materials in the heat exchangers, and the possibilities of accelerating the phase change are discussed. Based on the literature reviewed, it is found that the phase change time of phase change materials in the heat exchangers can be reduced by changing the geometrical parameters of heat exchangers or by using fins, metal foams, heat pipes, and multiple phase change materials. To decrease the phase change material’s phase change time in the tubular heat exchangers it is recommended to increase the number of tubes keeping the phase change material’s mass constant. In the case of tanks filled with spherical phase change material’s capsules, the capsules’ diameter should be reduced to shorten the phase change time. However, it is found that some changes in the constructions of heat exchangers reduce the melting time of the phase change materials, but they increase the solidification time.


Author(s):  
Russell Muren ◽  
Diego A. Arias ◽  
Brian Luptowski

Sizing and cost models were developed for thermal energy storage (TES) systems utilizing cascaded phase change materials (PCM) as the storage media in a variety of configurations. The sizing model is based on an energy balance around a characteristic fundamental element of the system, consisting of a steel pipe embedded in a matrix of phase change material. Due to the transient behavior PCM system, the sizing model requires time and space integrations. The model accounts for decreases in thermal performance caused by precipitate formation on the surface of the pipe and predicts the resulting transient power output. The model calculates the required tank and pipe sizes, the amounts of heat transfer fluid and PCM, as well as the land area for the configuration. Using a cost metric approach, the cost of each system component is estimated. Furthermore, the effect of several technological pitfalls, including: pinch point heat transfer, precipitate buildup, and transient energy output have been investigated. Prices are shown to depend heavily on system configuration. Specifically, prices are shown to be most dependent on precipitate formation during discharge and consequently the size of the necessary heat transfer area of heat exchangers. The cost of different configurations vary from $40/kWh to $100/kWh.


2020 ◽  
Vol 9 (3) ◽  
pp. 21
Author(s):  
Linus Kweku Labik ◽  
Bright Kwakye-Awuah ◽  
Eric Kwabena Kyeh Abavare ◽  
Baah Sefa-Ntiri ◽  
Isaac Nkrumah ◽  
...  

Zeolites based on the numerous applications can be utilised in providing solutions to some challenges of our world. With the ability to store thermal energy as chemical potential, zeolites are able to store thermal energy for long periods. This can occur with very minimal loss of energy and indefinitely unless the zeolite comes into contact with an adsorbate. The use of zeolite - water as adsorbent - adsorbate pair in thermal energy storage (TES) applications have been studied and have shown good results. However, the cost of zeolites synthesized from reagents continue to hamper the effective use of this adsorbent. Zeolite A was synthesized from kaolin from Wassa in Ghana based on a modified synthesis route. The adsorption properties of the zeolite utilising a designed and fabricated TES system using amounts of 100g, 200g, 300g, 400g and 500g of zeolite with a 1:1.5 ratio to water. Adsorption isosteres were plotted with the temperature and pressure values recorded and results showed correlation to adsorption behaviour of zeolites. Langmuir adsorption isotherms with r-squared values greater than 90% confirmed the affinity of water for zeolites. isosteric heat of adsorption was calculated with the minimum being 5,655.84 J/g and the maximum being 8,113.44 J/g. This confirms that the Zeolite A synthesized from Was kaolin has the structural properties needed for TES applications.


Author(s):  
Paul Gregory Felix ◽  
Velavan Rajagopal ◽  
Kannan Kumaresan

Latent heat thermal energy storage heat exchangers store heat energy by virtue of the phase transition that occurs in the thermal storage media. Since phase change materials (PCMs) are utilized as the media, there is a critical necessity for the appropriate selection of the PCM utilized. Since multiple thermo-physical properties and multiple PCMs are required to be evaluated for the selection, there arises a need for multiple criteria decision making (MCDM) algorithms to be adopted for the selection. But owing to the different weight estimation techniques employed and the voluminous quantity of selection algorithms available, there arises a need for a comparative methodology to be adopted. This study was intended to select an optimal PCM for a sustainable steam cooking application coupled with a thermal energy storage system. In this research study, six PCMs were chosen as the alternatives and five thermo-physical properties were chosen as the criteria for the evaluation. 11 different algorithms were augmented with 3 different weight estimation techniques and therefore a total of 33 algorithms were employed in this study. All of the algorithms have chosen Erythritol as the optimal PCM for the application. The outcomes of the MCDM algorithms have been validated through an intricate Pearson’s correlation coefficient study.


Sign in / Sign up

Export Citation Format

Share Document