Local Thermal Non-equilibrium Analysis of Boundary Layer Flow of Carreau Fluid Over a Wedge in a Porous Medium

2021 ◽  
Author(s):  
Ramesh Kudenatti ◽  
Sandhya L

Abstract This work examines the steady two-dimensional mixed convection boundary layer flow of non-Newtonian Carreau fluid embedded in a porous medium. The impermeable wedge is at rest over which the momentum and thermal boundary layers form due to motion of Carreau fluid with a large Reynolds number. We consider local thermal non-equilibrium for which the temperature of the solid porous medium is different from that of fluid phase, and hence, a single heat-transport equation is replaced by a two-temperature model. The governed equations for flow and heat transfer are converted into a system of ordinary differential equations using a similarity approach. It is observed that local thermal non-equilibrium effects are dominant for small interphase heat transfer rate and porosity scaled conductivity parameters. It is shown that the temperature at any location of the solid porous medium is always higher than that of fluid phase. When these parameters are increased gradually the local thermal equilibrium phase is recovered at which the temperatures of the fluid and solid are identical at each pore. Similar trend is noticed for both shear-thinning and shear-thickening fluids. The results further show that heat exchange between the fluid and solid porous medium is similar to both assisted and opposed flows and Carreau fluid. The velocity and temperature fields for the various increasing fluid index, Grashof number and permeability show that the thickness of the momentum and thermal boundary layer is thinner.

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Ramesh B. Kudenatti ◽  
Shashi Prabha Gogate S.

Abstract This work examines the steady three-dimensional forced convective thermal boundary-layer flow of laminar and incompressible fluid in a porous medium. In this analysis, it is assumed that the solid phase and the fluid phase, which is immersed in a porous medium are subjected to local thermal nonequilibrium (LTNE) conditions, which essentially leads to one thermal boundary-layer equation for each phase. Suitable similarity transformations are introduced to reduce the boundary-layer equations into system of nonlinear ordinary differential equations, which are analyzed numerically using an implicit finite difference-based Keller-box method. The numerical results are further confirmed by the asymptotic solution of the same system for large three-dimensionality parameter, and the corresponding results agree well. Our results show that the thickness of boundary layer is always thinner for all permeability parameters tested when compared to the nonporous case. Also, it is noticed that the temperature of solid phase is found to be higher than the corresponding fluid phase for any set of parameters. There is a visible temperature difference in the two phases when the microscopic interphase rate is quite large. The physical hydrodynamics to these parameters is studied in some detail.


2021 ◽  
Vol 8 (65) ◽  
pp. 15142-15146
Author(s):  
Ram Naresh Singh

In this paper we study a problem of the boundary layer flow through a porous media in the presence of heat transfer. Here we consider high porosity bounded by a semi-infinite horizontal plate. The main aim of this study is to point out local similarity transformations for the boundary layer flow, through a homogeneous porous medium. Here we applying finite difference schemes to find out the numerical solutions of the problem. The free stream velocity and the temperature far away from the plate are exponential function of variables.


2004 ◽  
Vol 34 (1) ◽  
Author(s):  
K. M. C. Pillai ◽  
K. S. Sai ◽  
N. S. Swamy ◽  
H. R. Nataraja ◽  
S. B. Tiwari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document