Rotorcraft Dynamic Platform Landings Using Robotic Landing Gear

Author(s):  
Benjamin León ◽  
Julian Rimoli ◽  
Claudio V. Di Leo

Abstract Articulating landing gear that use closed-loop feedback control are proven to expand the landing capabilities of rotorcraft on sloped and rough terrain. These systems are commonly referred to as robotic landing gear (RLG). Modern robotic landing gear systems have limitations for landing on dynamic platforms because their controllers do not incorporate fuselage roll and roll rate feedback. This work presents a proven crashworthy cable-driven RLG system for the commercial S-100 Camcopter that expands static landing zone limits by a factor of three and enables dynamic platform landings in rough Sea State conditions. A new roll and foot-force feedback fused control algorithm is developed to enable ship deck landings of an RLG equipped S-100 without the need for deck lock or advanced vision based landing systems. Multibody dynamic simulations of the aircraft, landing gear, and new control system show the benefits of this combined roll and force feedback approach. Results include experimental dynamic landings on platforms rolling under sinusoidal motion and simulated Sea State conditions. The experiments demonstrate, in a limited fashion, the usability of the RLG through ground experimentation, and the results are compared to simulations. Additional simulations of landings of the S-100 with rigid and active landing gear with more challenging landing conditions than experimentally tested are presented. Such results aid in understanding how RLG with this new roll and contact force fused controller prevent dynamic roll-over.

2009 ◽  
Vol 2009 (0) ◽  
pp. 321-322
Author(s):  
Kazuhide Isotani ◽  
Kenji Hayama ◽  
Akio Ochi ◽  
Toshiyuki Kumada

2016 ◽  
Vol 17 ◽  
pp. 89-100 ◽  
Author(s):  
Abdurrhman A. Alroqi ◽  
Wei Ji Wang

Heavy aircraft main landing gear tyres skid immediately after touchdown as result of the high slip ratio between the tyres and runway, which lead to tyre wear and smoke. In this paper, the tyre wear is modelled on the Archard theory using ANSYS mechanical transient, to reveal the wheel’s dynamic and the tyre tread wear. The wheel’s dynamic and the amount of wear are calculated for initially static and for pre-spun wheels in order to find the effectiveness of the technique of pre-spinning the wheel, as suggested by many patents since the early days of airplane use, in order to eliminate aircraft landing wear and smoke.


Author(s):  
Matt H. Travis

Abstract The feasibility of computing non-linear transient finite element simulations of aircraft landing gear brake whirl and squeal is demonstrated and discussed. Methodology to conduct the high frequency brake transient analysis is developed using an explicit integration finite element approach. Results indicate the approach has the capability to simulate brake dynamic behavior in dynamometer and aircraft landing gear installations — thus enabling evaluation of modifications to braking systems that lead to more stable and robust designs. A simple multi-disk brake model is developed and described. Modeling techniques for including the dynamometer road wheel and runway in the simulations are given. Issues such as piston housing hydraulic fluid stiffness and damping effects, and parametric friction modeling are discussed.


2021 ◽  
pp. 830-840
Author(s):  
Lei Dong ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun ◽  
ZhenPing Yu

Sign in / Sign up

Export Citation Format

Share Document