Numerical and Experimental Investigation of Low Reynolds Number Effects on Laminar Flow Separation and Transition in a Cascade of Compressor Blades

Author(s):  
Shunji Enomoto ◽  
C. Hah ◽  
G. V. Hobson

The results of an experimental and numerical comparison of the effects of low Reynolds number on flow separation and transition in a controlled-diffusion compressor cascade are presented. The flow separation and subsequent flow transition are associated with low Reynolds number effects in the compressor blade rows. Current steady-state Reynolds-averaged Navier-Stokes codes with available turbulence and transition models do not calculate the current flow phenomena properly. An unsteady three-dimensional Navier-Stokes calculation that applies a third-order accurate upwind method has been performed and the numerical results are compared to the measurements in detail. The results from the current numerical procedure agree very well with the measurements in terms of laminar flow separation, reattachment, and subsequent flow transition at low Reynolds numbers. The present study indicates that flow separation and flow transition inside compressor blade rows at low Reynolds number are phenomena dominated by relatively larger eddies near the wall and can be simulated with the current type of unsteady numerical procedure.

1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


1998 ◽  
Vol 120 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Peter Gerlinger ◽  
Dieter Bru¨ggemann

A multigrid method for convergence acceleration is used for solving coupled fluid and turbulence transport equations. For turbulence closure a low-Reynolds-number q-ω turbulence model is employed, which requires very fine grids in the near wall regions. Due to the use of fine grids, convergence of most iterative solvers slows down, making the use of multigrid techniques especially attractive. However, special care has to be taken on the strong nonlinear turbulent source terms during restriction from fine to coarse grids. Due to the hyperbolic character of the governing equations in supersonic flows and the occurrence of shock waves, modifications to standard multigrid techniques are necessary. A simple and effective method is presented that enables the multigrid scheme to converge. A strong reduction in the required number of multigrid cycles and work units is achieved for different test cases, including a Mack 2 flow over a backward facing step.


Author(s):  
M. R. Amiralaei ◽  
H. Alighanbari ◽  
S. M. Hashemi

The objective of the present study is to investigate the low Reynolds number (LRN) fluid dynamics of an elliptic airfoil performing a novel figure-eight-like motion. To this mean, the influence of phase angle between the pitching and translational (heaving and lagging) motions and the amplitude of translational motions on the fluid flow is simulated. Navier-Stokes (NS) equations with Finite Volume Method (FVM) are used and the instantaneous force coefficients and the fluid dynamics performance, as well as the corresponding vortical structures are analyzed. Both the phase angle and the amplitudes of horizontal and vertical motions are of great importance to the fluid dynamic characteristics of the model as they are shown to change the peaks of the fluid forces, fluid dynamic performance, and the vortical patterns around the model.


Author(s):  
Yashvardhan Tomar ◽  
Dhwanil Shukla ◽  
Narayanan Komerath

Abstract Vertical takeoff and landing vehicle platforms with many small rotors are becoming increasingly pertinent for small Unmanned Aerial Vehicles (UAVs) as well as distributed electric propulsion for larger vehicles. These rotors operate at low Reynolds number unlike large rotors for which the existing prediction methods were developed. Operating at very low Reynolds number essentially means that viscous effects are more dominant; and their spatial spread is significant with respect to the rotor dimensions. This impacts the nature of inter-rotor aerodynamic interactions which become more difficult to predict and characterize. In the present research, two nominally identical commercial UAV rotors are studied for a range of separations in hover and forward flight, both experimentally and computationally, in parallel with ongoing vehicle flight tests with 4 and 8 rotors. Bi-rotor tests in tandem in-plane configuration were performed in Georgia Tech’s 2.13m × 2.74m test section wind tunnel. Rotor simulations were done using the RotCFD Navier-Stokes solver. In hover, rotor performance is sensitive to the distance between rotors at low rotation speeds, indicating the presence of greater inter-rotor interactions at low Reynolds number. In forward flight, the performance of the downstream rotor gets negatively affected by the upstream rotor wake.


2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


Sign in / Sign up

Export Citation Format

Share Document