Development of Real Time High Energy X-Ray Imaging System for Use in Dynamic Fluoroscopy of Aero Gas Turbines

1975 ◽  
Author(s):  
A. E. Stewart

This paper discusses the development of a real-time high energy x-ray imaging system for use in dynamic fluoroscopy of aero gas turbines. In order to cover the range of subjects on gas turbines, over ten combinations of film and screen types are used. Three different types of x-ray imaging systems were considered for use: direct type intensifiers (cesium iodide phosphors), and indirect type intensifiers — Marconi “Marionette” and the Oude Delft “Delcalix.”

Author(s):  
Dipayan Das ◽  
KC Santosh ◽  
Umapada Pal

Abstract Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in less than a couple of months, and the infection, caused by SARS-CoV-2, is spreading at an unprecedented rate. AI-driven tools are used to identify Coronavirus outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six different types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID- 19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis and healthy CXRs. To the best of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using CXRs.


2014 ◽  
Vol 898 ◽  
pp. 614-617
Author(s):  
Rui Hong Li ◽  
Yue Ping Han

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1699
Author(s):  
Ahmed Jibril Abdi ◽  
Bo R. Mussmann ◽  
Alistair Mackenzie ◽  
Oke Gerke ◽  
Benedikte Klaerke ◽  
...  

The aim of this study was to determine the quantitative image quality metrics of the low-dose 2D/3D EOS slot scanner X-ray imaging system (LDSS) compared with conventional digital radiography (DR) X-ray imaging systems. The effective detective quantum efficiency (eDQE) and effective noise quantum equivalent (eNEQ) were measured using chest and knee protocols. Methods: A Nationwide Evaluation of X-ray Trends (NEXT) of a chest adult phantom and a PolyMethylmethacrylate (PMMA) phantom were used for the chest and knee protocols, respectively. Quantitative image quality metrics, including effective normalised noise power spectrum (eNNPS), effective modulation transfer function (eMTF), eDQE and eNEQ of the LDSS and DR imaging systems were assessed and compared. Results: In the chest acquisition, the LDSS imaging system achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.044). For the knee acquisition, the LDSS imaging system also achieved significantly higher eNEQ and eDQE than the DR imaging systems at lower and higher spatial frequencies (0.001 > p ≤ 0.002). However, there was no significant difference in eNEQ and eDQE between DR systems 1 and 2 at lower and higher spatial frequencies (0.10 < p < 1.00) for either chest or knee protocols. Conclusion: The LDSS imaging system performed well compared to the DR systems. Thus, we have demonstrated that the LDSS imaging system has the potential to be used for clinical diagnostic purposes.


2015 ◽  
Vol 24 (3) ◽  
pp. 353-371 ◽  
Author(s):  
Michael J. Fowler ◽  
Marylesa Howard ◽  
Aaron Luttman ◽  
Stephen E. Mitchell ◽  
Timothy J. Webb

1985 ◽  
Vol 56 (5) ◽  
pp. 845-845
Author(s):  
B. H. Failor ◽  
E. H. Silver ◽  
J. F. Clauser

Sign in / Sign up

Export Citation Format

Share Document