scholarly journals Turbulent Flow Computations in Rotating Cavities Using Low-Reynolds-Number Models

Author(s):  
Hector Iacovides ◽  
Kostas S. Nikas ◽  
Marcel A. F. Te Braak

This study is concerned with the use of low-Reynolds-number models of turbulence transport in the computation of flows through rotating cavities. The models tested are the Launder and Sharma low-Re k-ε (L-S) and a low-Re differential second-moment closure (DSM), first used by Iacovides and Toumpanakis, both with and without the Yap correction term to the dissipation rate equation. The cases examined include rotor-stator systems without throughflow, rotor-stator systems with radial outflow, contra-rotating disc systems without throughflow and also with radial outflow, co rotating discs with radial outflow and also rotor-stator systems with radial inflow. Earlier studies have shown that, when no throughflow or when radial outflow is involved, the L-S tends to over-estimate the size of the regions over which the boundary layers remain laminar, while the zonal k-ε/l-eqn model is unable to predict partially laminarized flows. A modification to the ε equation proposed here, which in regions of low turbulence reduces the dissipation rate when the fluid is in solid body rotation, provides a simple empirical way to significantly improve the L-S predictions of partially laminarized flows through rotating cavities, to acceptable levels. The DSM model used, in some cases led to some further predictive improvements and, for rotor-stator systems without throughflow, to a significant improvement in the predicted value of the moment coefficient. The Yap length scale correction term, while in most cases it has either a beneficial or a neutral effect on the flow predictions, in cases involving radial inflow it leads to poorer predictions. Models that do not rely on wall distance thus appear more likely to have a wider range of applicability.

2001 ◽  
Vol 105 (1048) ◽  
pp. 297-306 ◽  
Author(s):  
M. A. Leschziner ◽  
P. Batten ◽  
T. J. Craft

AbstractSeveral afterbody flows, involving shock-boundary-layer interaction, are used to evaluate recent developments in a realizable low-Reynolds-number, second-moment closure of turbulence. The model considered is a compressibility-adapted variant of the recent incompressible-flow form of Craft and Launder. This includes a tensorially cubic model for the influential pressure-strain process, ϕij, which satisfies the two-component-turbulence limit at the wall, is directly applicable to low-Reynolds-number flow regions and does not rely on or use surface-topography parameters, such as wall-normal distance or direction. Improved predictions for afterbody flows are demonstrated, relative to existing low-Reynolds-number two-equation models and the most elaborate form of Reynolds-stress closure incorporating a linear approximation for the pressure-strain process.


2005 ◽  
Vol 2005 (3) ◽  
pp. 232-243 ◽  
Author(s):  
Konstantinos-Stephen P. Nikas ◽  
Hector Iacovides

We present computations of heat and fluid flow through a square-ended U-bend that rotates about an axis normal to both the main flow direction and also the axis of curvature. Two-layer and low-Reynolds-number mathematical models of turbulence are used at effective-viscosity (EVM) level and also at second-moment-closure (DSM) level. Moreover, two length-scale correction terms to the dissipation rate of turbulence are used with the low-Re models, the original Yap term, and a differential form that does not require the wall distance (NYap). The resulting predictions are compared with available flow and heat transfer measurements of water. While the main flow features are well reproduced by all models, the development of the mean flow within and just after the bend is better reproduced by the low-Re models. Turbulence levels within the rotating U-bend are underpredicted, but DSM models produce a more realistic distribution. Along the leading side, all models overpredict heat transfer levels just after the bend. Along the trailing side, the heat transfer predictions of the low-Re DSM with the NYap, are close to the measurements.


1976 ◽  
Vol 74 (4) ◽  
pp. 593-610 ◽  
Author(s):  
K. Hanjalić ◽  
B. E. Launder

The problem of closing the Reynolds-stress and dissipation-rate equations at low Reynolds numbers is considered, specific forms being suggested for the direct effects of viscosity on the various transport processes. By noting that the correlation coefficient$\overline{uv^2}/\overline{u^2}\overline{v^2} $is nearly constant over a considerable portion of the low-Reynolds-number region adjacent to a wall the closure is simplified to one requiring the solution of approximated transport equations for only the turbulent shear stress, the turbulent kinetic energy and the energy dissipation rate. Numerical solutions are presented for turbulent channel flow and sink flows at low Reynolds number as well as a case of a severely accelerated boundary layer in which the turbulent shear stress becomes negligible compared with the viscous stresses. Agreement with experiment is generally encouraging.


1996 ◽  
Vol 118 (2) ◽  
pp. 255-259 ◽  
Author(s):  
Hanzhong Zhang ◽  
Mohammad Faghri ◽  
Frank M. White

A new low-Reynolds-number k-ε model is proposed to simulate turbulent flow over smooth and rough surfaces by including the equivalent sand-grain roughness height into the model functions. The simulation of various flow experiments shows that the model can predict the log-law velocity profile and other properties such as friction factors, turbulent kinetic energy and dissipation rate for both smooth and rough surfaces.


Sign in / Sign up

Export Citation Format

Share Document