scholarly journals Validation of a 4D Finite Volume Method for Blade Flutter

Author(s):  
Pieter Groth ◽  
Hans Mårtensson ◽  
Lars-Erik Eriksson

A finite volume method for blade flutter analyses, using moving grids is presented and partly validated. The method which solves the unsteady three-dimensional Euler equations is formulated in the four-dimensional time-space domain. An algebraic grid generation technique based on transfinite interpolation is used to move and deform the grid to conform to the blade motion. Fluxes are calculated using a third-order upwind-biased scheme. For time marching both an explicit three-stage Runge-Kutta scheme and a Crank-Nicolson scheme is used. Internal and external flows are calculated using the present method. Calculated results agree well with the corresponding experiments and with results obtained using other methods.

Author(s):  
Bjo¨rn Laumert ◽  
Hans Ma˚rtensson ◽  
Torsten H. Fransson

A finite volume method for the computation of rotor/stator interaction for stages with arbitrary rotor/stator pitch ratios is presented and partly validated in this paper. The method which solves the unsteady three-dimensional Euler equations is formulated in the four-dimensional time-space domain. The method of time inclination is utilized to account for unequal pitchwise periodicity by distributing time co-ordinates at the grid nodes such that phase lagged boundary conditions can be employed. Calculated results show excellent agreement with the results of a reference solver for the validation test case. Furthermore the method was applied to the simulation of the unsteady flow field in a transonic test turbine stage with a stator/rotor pitch ratio of 1.875. The results were compared with measurements of the unsteady rotor blade pressure and a reference solver calculation where an approximate pitch ratio of 2.0 with a 6.7% scaled rotor geometry was employed. Both computational cases show satisfactory agreement with the experiments for both time averaged pressure distributions and pressure perturbation amplitudes.


AIAA Journal ◽  
1973 ◽  
Vol 11 (11) ◽  
pp. 1478-1485 ◽  
Author(s):  
ARTHUR W. RIZZI ◽  
MAMORU INOUYE

Sign in / Sign up

Export Citation Format

Share Document