Simulation of the Wake of the Flow Around Two Side-By-Side Circular Cylinders at Reynolds Number 5000

Author(s):  
Anna Lyhne Jensen ◽  
Henrik Sørensen ◽  
Jakob Hærvig

Abstract Interaction between the wakes of two cylinders in side-by-side configuration creates interesting flow phenomena. The nature of the wake depends on the Reynolds number and the transverse pitch distance between the cylinders. The flow over two side-by-side cylinders of equal diameter is simulated in 3D at Reynolds number 5000 using Large Eddy Simulation (LES). The centre-to-centre transverse pitch ratio is varied and the flow behind the cylinders is classified into either a bi-stable flow regime with biased gap flow or a regime with parallel vortex streets. Furthermore, representative instantaneous flow fields, Strouhal number and the time varying drag coefficient C′D are presented.

2008 ◽  
Vol 130 (10) ◽  
Author(s):  
G. Yu ◽  
E. J. Avital ◽  
J. J. R. Williams

Flows past a free surface piercing cylinder are studied numerically by large eddy simulation at Froude numbers up to FrD=3.0 and Reynolds numbers up to ReD=1×105. A two-phase volume of fluid technique is employed to simulate the air-water flow and a flux corrected transport algorithm for transport of the interface. The effect of the free surface on the vortex structure in the near wake is investigated in detail together with the loadings on the cylinder at various Reynolds and Froude numbers. The computational results show that the free surface inhibits the vortex generation in the near wake, and as a result, reduces the vorticity and vortex shedding. At higher Froude numbers, this effect is stronger and vortex structures exhibit a 3D feature. However, the free surface effect is attenuated as Reynolds number increases. The time-averaged drag force on the unit height of a cylinder is shown to vary along the cylinder and the variation depends largely on Froude number. For flows at ReD=2.7×104, a negative pressure zone is developed in both the air and water regions near the free surface leading to a significant increase of drag force on the cylinder in the vicinity of the free surface at about FrD=2.0. The mean value of the overall drag force on the cylinder increases with Reynolds number and decreases with Froude number but the reduction is very small for FrD=1.6–2.0. The dominant Strouhal number of the lift oscillation decreases with Reynolds number but increases with Froude number.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2012 ◽  
Vol 232 ◽  
pp. 471-476 ◽  
Author(s):  
Rui Zhao ◽  
Chao Yan

The flow past a circular cylinder at a subcritical Reynolds number 3900 was simulated by the method of detached-eddy simulation (DES). The objective of this present work is not to investigate the physical phenomena of the flow but to study modeling as well as numerical aspects which influence the quality of DES solutions in detail. Firstly, four typical spanwise lengths are chosen and the results are systematically compared. The trend of DES results along the span increment is different from previous large-eddy simulation (LES) investigation. A wider spanwise length does not necessary improve the results. Then, the influence of mesh resolution is studied and found that both too coarse and over refined grids will deteriorate the performance of DES. Finally, different orders of numerical schemes are applied in the inviscid fluxes and the viscous terms. The discrepancies among different schemes are found tiny. However, the instantaneous flow structures produced by 5th order WENO with 4th order central differencing scheme are more abundant than the others. That is, for the time-averaged quantities, the second-order accurate schemes are effective enough, whereas the higher-order accurate methods are needed to resolve the transient characteristics of the flow.


1998 ◽  
pp. 319-338 ◽  
Author(s):  
J. Fröhlich ◽  
W. Rodi ◽  
Ph. Kessler ◽  
S. Parpais ◽  
J. P. Bertoglio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document