An Annular Impinging Jet Alternated by Pulse-Modulated Synthetic Jets

Author(s):  
Zdeneˇk Tra´vni´cˇek ◽  
Va´clav Tesarˇ

The present experimental study focuses on a generation and control of annular impinging jets. The used working fluid is air. An active flow control system is designed with six radial synthetic jets, which are generated by a common actuator located in the central body of the annular nozzle. The synthetic jets are pulse-modulated. Flow visualization and measurements of the wall pressure and wall heat transfer have been performed. Two flowfield steady patterns A and B (small or large recirculation bubbles, respectively) are recognized. The pattern B exists without the actuation, the unmodulated actuation causes the flowfield switching into the pattern A, and the pulse-modulated actuation generates an alternating flowfield. The present results indicate that the area of higher heat transfer can be slightly spread by means of flow alternation. However, the penalty for this slight gain is a substantial reduction of the heat transfer in the central area.

2021 ◽  
Author(s):  
MyungJun Song ◽  
Vikas Nataraj Bhargav ◽  
Serdar Seckin ◽  
Prabu Sellappan ◽  
Rajan Kumar ◽  
...  

2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
J. Nunes-Pereira ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
S. Lanceros-Mendez

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are simple devices with great potential for active flow control applications. Further, it has been recently proven their ability for applications in the area of heat transfer, such as film cooling of turbine blades or ice removal. The dielectric material used in the fabrication of these devices is essential in determining the device performance. However, the variety of dielectric materials studied in the literature is very limited and the majority of the authors only use Kapton, Teflon, Macor ceramic or poly(methyl methacrylate) (PMMA). Furthermore, several authors reported difficulties in the durability of the dielectric layer when the actuators operate at high voltage and frequency. Also, it has been reported that, after long operation time, the dielectric layer suffers degradation due to its exposure to plasma discharge, degradation that may lead to the failure of the device. Considering the need of durable and robust actuators, as well as the need of higher flow control efficiencies, it is highly important to develop new dielectric materials which may be used for plasma actuator fabrication. In this context, the present study reports on the experimental testing of dielectric materials which can be used for DBD plasma actuators fabrication. Plasma actuators fabricated of poly(vinylidene fluoride) (PVDF) and polystyrene (PS) have been fabricated and evaluated. Although these dielectric materials are not commonly used as dielectric layer of plasma actuators, their interesting electrical and dielectric properties and the possibility of being used as sensors, indicate their suitability as potential alternatives to the standard used materials. The plasma actuators produced with these nonstandard dielectric materials were analyzed in terms of electrical characteristics, generated flow velocity and mechanical efficiency, and the obtained results were compared with a standard actuator made of Kapton. An innovative calorimetric method was implemented in order to estimate the thermal power transferred by these devices to an adjacent flow. These results allowed to discuss the ability of these new dielectric materials not only for flow control applications but also for heat transfer applications.


2022 ◽  
Author(s):  
Marcel Ilie ◽  
Jackson Asiatico ◽  
Matthew Chan

Author(s):  
Junkyu Jung ◽  
Daren Elcock ◽  
Chih-Jung Kuo ◽  
Michael Amitay ◽  
Yoav Peles

A flow control method is presented that employ liquid and gas jets to enhance heat and mass transfer in micro domains. By introducing pressure disturbances, mixing can be significantly enhanced through the promotion of early transition to a turbulent flow. Since heat transfer mechanisms are closely linked to flow characteristics, the heat transfer coefficient can be significantly enhanced with rigorous mixing. The flow field of water around a low aspect ratio micro circular pillar of diameter 150 μm entrenched inside a 225 μm high by 1500 μm wide microchannel with active flow control was studied and its effect on mixing is discussed. A steady control jet emanating from a 25 μm slit on the pillar was introduced to induce favorable disturbances to the flow in order to modify the flow field, promote turbulence, and increase large-scale mixing. Micro particle image velocimetry (μPIV) was employed to quantify the flow field, the spanwise vorticity, and the turbulent kinetic energy (TKE) in the microchannel. Flow regimes (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated. The turbulent kinetic energy was shown to significantly increase with the controlled jet, and therefore, significantly enhance mixing at the micro scale.


Sign in / Sign up

Export Citation Format

Share Document