G1 Continuity of C-Bezier Rectangular Surfaces

Author(s):  
Manhong Wen ◽  
Kwun-Lon Ting

Abstract This paper probes G1 continuity between two adjacent c-Bezier rectangular patches. The necessary and sufficient conditions are derived. It shows that the coplanar condition for G1 continuity of two adjacent Bezier patches is not necessary for c-Bezier patches. Such a relaxation of constraints on control points is beneficial from vector weights of c-Bezier surfaces, which leads to two extra free design parameters for each control point. C-Bezier surfaces offer the possibility of obtaining G1 continuity by just adjusting the weights, which greatly simplifies the design to construct composite surfaces.


Author(s):  
Manhong Wen ◽  
Kwun-Lon Ting

Abstract This paper presents G1 and G2 continuity conditions of c-Bezier curves. It shows that the collinear condition for G1 continuity of Bezier curves is generally no longer necessary for c-Bezier curves. Such a relaxation of constraints on control points is beneficial from the structure of c-Bezier curves. By using vector weights, each control point has two extra free design parameters, which offer the probability of obtaining G1 and G2 continuity by only adjusting the weights if the control points are properly distributed. The enlargement of control point distribution region greatly simplifies the design procedure to and enhances the shape control on constructing composite curves.



Author(s):  
Brian Moore ◽  
Clément Gosselin

In this paper, the complete shaking force and moment balancing conditions for a special class of planar 5R linkages, the contra 5R linkage, is considered. Contra 5R linkages are planar 5R linkages in which the two input links are mechanically coupled and rotate at the same speed in opposite directions. A method to derive necessary and sufficient conditions on the design parameters to achieve moment balancing without introducing additional components is presented. Using this method, a complete classification of all shaking force and moment balanced contra 5R linkages is given.



2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Daud Ahmad ◽  
Kanwal Hassan ◽  
M. Khalid Mahmood ◽  
Javaid Ali ◽  
Ilyas Khan ◽  
...  

The Plateau-Bézier problem with shifted knots is to find the surface of minimal area amongst all the Bézier surfaces with shifted knots spanned by the admitted boundary. Instead of variational minimization of usual area functional, the quasi-minimal Bézier surface with shifted knots is obtained as the solution of variational minimization of Dirichlet functional that turns up as the sum of two integrals and the vanishing condition gives us the system of linear algebraic constraints on the control points. The coefficients of these control points bear symmetry for the pair of summation indices as well as for the pair of free indices. These linear constraints are then solved for unknown interior control points in terms of given boundary control points to get quasi-minimal Bézier surface with shifted knots. The functional gradient of the surface gives possible candidate functions as the minimizers of the aforementioned Dirichlet functional; when solved for unknown interior control points, it results in a surface of minimal area called quasi-minimal Bézier surface. In particular, it is implemented on a biquadratic Bézier surface by expressing the unknown control point P 11 as the linear combination of the known control points in this case. This can be implemented to Bézier surfaces with shifted knots of higher degree, as well if desired.



1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.



2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.





Sign in / Sign up

Export Citation Format

Share Document