Direct Yaw Moment Control for Motorized Wheel Electric Vehicles

Author(s):  
Avesta Goodarzi ◽  
Ebrahim Esmailzadeh ◽  
G. R. Vossoughi

Abstract A new control law for direct yaw moment control of an electric vehicle is developed. Although this study is considered as part of a global control system for the traction control of a four motorized wheel electric vehicle, but the results of this study is quite general and can be applied to other types of vehicles. The dynamic model of the system has been analyzed and, in accordance with the optimal control theory, an optimal controller is designed. Two different versions of the control law have been considered and the performance of each version has been separately studied and compared with each other. Finally, the numerical simulation of the vehicle-handling model with and without the use of the optimal yaw moment controller has been carried out. Results obtained indicate that considerable improvement in the vehicle handling has been achieved when the optimal yaw moment controller is engaged.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 106225-106237 ◽  
Author(s):  
Houzhong Zhang ◽  
Jiasheng Liang ◽  
Haobin Jiang ◽  
Yingfeng Cai ◽  
Xing Xu

2020 ◽  
Author(s):  
Yongqiang Zhao ◽  
Jinlong Cui ◽  
Zehui Zhou ◽  
Yang Fang ◽  
Deping Wang ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Wanke Cao ◽  
Zhiyin Liu ◽  
Yuhua Chang ◽  
Antoni Szumanowski

This paper investigates the robust direct yaw-moment control (DYC) through parameter-dependent fuzzy sliding mode control (SMC) approach for all-wheel-independent-drive electric vehicles (AWID-EVs) subject to network-induced delays. AWID-EVs have obvious advantages in terms of DYC over the traditional centralized-drive vehicles. However it is one of the most principal issues for AWID-EVs to ensure the robustness of DYC. Furthermore, the network-induced delays would also reduce control performance of DYC and even deteriorate the EV system. To ensure robustness of DYC and deal with network-induced delays, a parameter-dependent fuzzy sliding mode control (FSMC) method based on the real-time information of vehicle states and delays is proposed in this paper. The results of cosimulations with Simulink® and CarSim® demonstrate the effectiveness of the proposed controller. Moreover, the results of comparison with a conventional FSMC controller illustrate the strength of explicitly dealing with network-induced delays.


Sign in / Sign up

Export Citation Format

Share Document