Initial Condition Problems of Fractional Viscoelastic Equations

Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu

The 2nd order differential equation with fractional derivatives describing dynamic behavior of a single-degree-of-freedom viscoelastic oscillator, referred to as fractional viscoelastic equation (FVE), is considered. Some types of viscoelastic damped mechanical systems may be described by FVE. The differential equation with fractional derivatives is often called the fractional differential equation (FDE). FDE can be solved for zero initial values, but it can not generally be solved for non-zero initial values. How to solve the problem is one of the key issues in this field. This is called “Initial condition (value) problems” of FDE. In this paper, initial condition problems of FVE are solved by making use of the prehistory functions of unknowns which are specified before the initial instance (referred to as the initial functions) starts. Introduction of initial functions into FDE reflects the physical state in giving the initial values. In this paper, several types of initial function are used to solve unique solutions for a type of FVE (referred to as FVE-I). The solutions of FVE-I are obtained by means of both numerical and analytical methods. Implication of the solutions to viscoelastic material will also be discussed.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Assia Guezane-Lakoud ◽  
Adem Kılıçman

Abstract The purpose of this study is to discuss the existence of solutions for a boundary value problem at resonance generated by a nonlinear differential equation involving both right and left Caputo fractional derivatives. The proofs of the existence of solutions are mainly based on Mawhin’s coincidence degree theory. We provide an example to illustrate the main result.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2020 ◽  
Vol 23 (1) ◽  
pp. 103-125 ◽  
Author(s):  
Latif A-M. Hanna ◽  
Maryam Al-Kandari ◽  
Yuri Luchko

AbstractIn this paper, we first provide a survey of some basic properties of the left-and right-hand sided Erdélyi-Kober fractional integrals and derivatives and introduce their compositions in form of the composed Erdélyi-Kober operators. Then we derive a convolutional representation for the composed Erdélyi-Kober fractional integral in terms of its convolution in the Dimovski sense. For this convolution, we also determine the divisors of zero. These both results are then used for construction of an operational method for solving an initial value problem for a fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives defined on the positive semi-axis. Its solution is obtained in terms of the four-parameters Wright function of the second kind. The same operational method can be employed for other fractional differential equation with the left-and right-hand sided Erdélyi-Kober fractional derivatives.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yanning Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

Using conformable fractional calculus on time scales, we first introduce fractional Sobolev spaces on time scales, characterize them, and define weak conformable fractional derivatives. Second, we prove the equivalence of some norms in the introduced spaces and derive their completeness, reflexivity, uniform convexity, and compactness of some imbeddings, which can be regarded as a novelty item. Then, as an application, we present a recent approach via variational methods and critical point theory to obtain the existence of solutions for ap-Laplacian conformable fractional differential equation boundary value problem on time scaleT:  Tα(Tαup-2Tα(u))(t)=∇F(σ(t),u(σ(t))),Δ-a.e.  t∈a,bTκ2,u(a)-u(b)=0,Tα(u)(a)-Tα(u)(b)=0,whereTα(u)(t)denotes the conformable fractional derivative ofuof orderαatt,σis the forward jump operator,a,b∈T,  0<a<b,  p>1, andF:[0,T]T×RN→R. By establishing a proper variational setting, we obtain three existence results. Finally, we present two examples to illustrate the feasibility and effectiveness of the existence results.


Author(s):  
Myong-Ha Kim ◽  
Guk-Chol Ri ◽  
Hyong-Chol O

AbstractThis paper provides results on the existence and representation of solution to an initial value problem for the general multi-term linear fractional differential equation with generalized Riemann-Liouville fractional derivatives and constant coefficients by using operational calculus of Mikusinski’s type. We prove that the initial value problem has the solution if and only if some initial values are zero.


2016 ◽  
Vol 12 (11) ◽  
pp. 6807-6811
Author(s):  
Haribhau Laxman Tidke

We study the uniquenessof solutionfor nonlinear implicit fractional differential equation with initial condition involving Caputo fractional derivative. The technique used in our analysis is based on an application of Bihari and Medved inequalities.


2020 ◽  
Vol 36 (3) ◽  
pp. 453-462
Author(s):  
RODICA LUCA

We investigate the existence of solutions for a Riemann-Liouville fractional differential equation with a nonlinearity dependent of fractional integrals, subject to nonlocal boundary conditions which contain various fractional derivatives and Riemann-Stieltjes integrals. In the proof of our main results we use different fixed point theorems.


Sign in / Sign up

Export Citation Format

Share Document