A Hybrid Method Using Response Surface and Pattern Search for Design Optimization

Author(s):  
T. Zhang ◽  
K. K. Choi ◽  
S. Rahman

This paper presents a new method to construct response surface function and a new hybrid optimization method. For the response surface function, the radial basis function is used for a zeroth-order approximation, while new bases is proposed for the moving least squares method for a first-order approximation. For the new hybrid optimization method, the gradient-based algorithm and pattern search algorithm are integrated for robust and efficient optimization process. These methods are based on: (1) multi-point approximations of the objective and constraint functions; (2) a multi-quadric radial basis function for the zeroth-order function representation or radial basis function plus polynomial based moving least squares approximation for the first-order function approximation; and (3) a pattern search algorithm to impose a descent condition. Several numerical examples are presented to illustrate the accuracy and computational efficiency of the proposed method for both function approximation and design optimization. The examples for function approximation indicate that the multi-quadric radial basis function and the proposed radial basis function plus polynomial based moving least squares method can yield accurate estimates of arbitrary multivariate functions. Results also show that the hybrid method developed provides efficient and convergent solutions to both mathematical and structural optimization problems.

Heat Transfer ◽  
2021 ◽  
Author(s):  
Maryam Fallah Najafabadi ◽  
Hossein Talebi Rostami ◽  
Khashayar Hosseinzadeh ◽  
Davood Domiri Ganji

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yunfeng Wu ◽  
Xin Luo ◽  
Fang Zheng ◽  
Shanshan Yang ◽  
Suxian Cai ◽  
...  

This paper presents a novel adaptive linear and normalized combination (ALNC) method that can be used to combine the component radial basis function networks (RBFNs) to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error) and the better fidelity (characterized by normalized correlation coefficient) of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.


Sign in / Sign up

Export Citation Format

Share Document