local optimization
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 56)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Keji Mao ◽  
Lijian Chen ◽  
Xinben Fan ◽  
Jiafa Mao ◽  
Xiaolong Zhou ◽  
...  

Abstract The prediction of children's adult height is a common procedure in childhood endocrinology. Through the prediction of children's adult height, it is possible to find abnormalities in children's growth and development. Many jobs in today's society have certain requirements for height, so the accuracy of children adulthood height prediction is important for children. Current methods for predicting adult height of children have some shortcomings such as inaccurate accuracy. To deal with these problems, this paper analyzes the data collected by the Chinese children and adolescents' physical and growth health projects in primary and secondary schools in Zhejiang Province, and proposes a method for predicting adult height based on back propagation neural network (BPNN) with the body composition of children and adolescents as input. Since the BP algorithm has the risk of falling into local optimization, and we propose LSALO-BP model that incorporates the ant lion optimizer (LSALO) into the BP algorithm as location strategy to avoid local optimization. The improvements achieved by the ant lion algorithm are mainly reflected in: improving the ant's walk mode, and enhancing the global search ability of the LSALO algorithm. The comparison experiment of 10 benchmark functions proves the feasibility and effectiveness of the location strategy. The LSALO-BP model is applied to the prediction of adult height of children and adolescents. The experimental results show that compared with other models, the LSALO-BP prediction model has increased the prediction accuracy by 6.67%~16.08% for boys and 4.67%~6.6% for girls, which can more accurately predict the adult height of children and adolescents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rongquan Wang ◽  
Huimin Ma ◽  
Caixia Wang

Identifying the protein complexes in protein-protein interaction (PPI) networks is essential for understanding cellular organization and biological processes. To address the high false positive/negative rates of PPI networks and detect protein complexes with multiple topological structures, we developed a novel improved memetic algorithm (IMA). IMA first combines the topological and biological properties to obtain a weighted PPI network with reduced noise. Next, it integrates various clustering results to construct the initial populations. Furthermore, a fitness function is designed based on the five topological properties of the protein complexes. Finally, we describe the rest of our IMA method, which primarily consists of four steps: selection operator, recombination operator, local optimization strategy, and updating the population operator. In particular, IMA is a combination of genetic algorithm and a local optimization strategy, which has a strong global search ability, and searches for local optimal solutions effectively. The experimental results demonstrate that IMA performs much better than the base methods and existing state-of-the-art techniques. The source code and datasets of the IMA can be found at https://github.com/RongquanWang/IMA.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zi Yang

Aiming at the problems existing in the traditional teaching mode, this paper intelligently optimizes English teaching courses by using multidirectional mutation genetic algorithm and its optimization neural network method. Firstly, this paper gives the framework of intelligent English course optimization system based on multidirectional mutation genetic BP neural network and analyses the local optimization problems existing in the traditional BP algorithm. A BP neural network optimization algorithm based on multidirectional mutation genetic algorithm (MMGA-BP) is presented. Then, the multidirectional mutation genetic BPNN algorithm is applied to the intelligent optimization of English teaching courses. The simulation shows that the multidirectional mutation genetic BP neural network algorithm can solve the local optimization problem of traditional BP neural network. Finally, a control group and an experimental group are set up to verify the role of multidirectional mutation genetic algorithm and its optimization neural network in the intelligent optimization system of English teaching courses through the combination of summative and formative teaching evaluations. The data show that MMGA-BP algorithm can significantly improve the scores of academic students in English courses and has better teaching performance. The effect of vocabulary teaching under the guidance of MMGA-BP optimization theory is very significant, which plays a certain role in the intelligent curriculum optimization of the experimental class.


Author(s):  
Sami Sieranoja ◽  
Pasi Fränti

AbstractWe propose two new algorithms for clustering graphs and networks. The first, called K‑algorithm, is derived directly from the k-means algorithm. It applies similar iterative local optimization but without the need to calculate the means. It inherits the properties of k-means clustering in terms of both good local optimization capability and the tendency to get stuck at a local optimum. The second algorithm, called the M-algorithm, gradually improves on the results of the K-algorithm to find new and potentially better local optima. It repeatedly merges and splits random clusters and tunes the results with the K-algorithm. Both algorithms are general in the sense that they can be used with different cost functions. We consider the conductance cost function and also introduce two new cost functions, called inverse internal weight and mean internal weight. According to our experiments, the M-algorithm outperforms eight other state-of-the-art methods. We also perform a case study by analyzing clustering results of a disease co-occurrence network, which demonstrate the usefulness of the algorithms in an important real-life application.


2021 ◽  
Author(s):  
Marcus Michael Noack ◽  
David Perryman ◽  
Harinarayan Krishnan ◽  
Petrus H. Zwart

2021 ◽  
Author(s):  
Gaston Castro ◽  
Facundo Pessacg ◽  
Pablo De Cristoforis
Keyword(s):  

2021 ◽  
Author(s):  
Nils Müller ◽  
Tobias Glasmachers
Keyword(s):  

2021 ◽  
Vol 9 (6) ◽  
pp. 581
Author(s):  
Hongrae Park ◽  
Sungjun Jung

A cost-effective mooring system design has been emphasized for traditional offshore industry applications and in the design of floating offshore wind turbines. The industry consensus regarding mooring system design is mainly inhibited by previous project experience. The design of the mooring system also requires a significant number of design cycles. To take aim at these challenges, this paper studies the application of an optimization algorithm to the Floating Production Storage and Offloading (FPSO) mooring system design with an internal turret system at deep-water locations. The goal is to minimize mooring system costs by satisfying constraints, and an objective function is defined as the minimum weight of the mooring system. Anchor loads, a floating body offset and mooring line tensions are defined as constraints. In the process of optimization, the mooring system is analyzed in terms of the frequency domain and time domain, and global and local optimization algorithms are also deployed towards reaching the optimum solution. Three cases are studied with the same initial conditions. The global and local optimization algorithms successfully find a feasible mooring system by reducing the mooring system cost by up to 52%.


Sign in / Sign up

Export Citation Format

Share Document