A Statically Balanced Gough/Stewart-Type Platform

Author(s):  
Marco Carricato ◽  
Cle´ment Gosselin

Gravity compensation of spatial parallel manipulators is a relatively recent topic of investigation. Perfect balancing, by either counterweights or elastic elements, has been accomplished, so far, only for parallel mechanisms in which the weight of the moving platform is sustained by legs comprising purely rotational joints. Indeed, balancing of parallel mechanisms with translational actuators, which are among the most common and used ones, has been traditionally thought possible only by resorting to additional legs containing no prismatic joints between the base and the end-effector. This paper presents the conceptual and mechanical design of a balanced Gough/Stewart-type manipulator, in which the weight of the platform is entirely sustained by the legs comprising the extensible jacks. By the integrated action of both elastic elements and counterweights, each leg is statically balanced and it generates, at its tip, a constant force balancing the weight of the end-effector in any admissible configuration. If no elastic elements are used, the resulting manipulator is balanced with respect to the shaking force too. Two Appendices are also provided, presenting formal and novel derivations of the necessary and sufficient conditions allowing i) a body arbitrarily rotating in space to rest in a state of neutral equilibrium under the action of general constant-force generators, ii) a body pivoting about a universal joint and acted upon by a number of zero-free-length springs to exhibit constant potential energy regardless of its configuration.

2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Marco Carricato ◽  
Clément Gosselin

Gravity compensation of spatial parallel manipulators is a relatively recent topic of investigation. Perfect balancing has been accomplished, so far, only for parallel mechanisms in which the weight of the moving platform is sustained by legs comprising purely rotational joints. Indeed, balancing of parallel mechanisms with translational actuators, which are among the most common ones, has been traditionally thought possible only by resorting to additional legs containing no prismatic joints between the base and the end-effector. This paper presents the conceptual and mechanical designs of a balanced Gough/Stewart-type manipulator, in which the weight of the platform is entirely sustained by the legs comprising the extensible jacks. By the integrated action of both elastic elements and counterweights, each leg is statically balanced and it generates, at its tip, a constant force contributing to maintaining the end-effector in equilibrium in any admissible configuration. If no elastic elements are used, the resulting manipulator is balanced with respect to the shaking force too. The performance of a study prototype is simulated via a model in both static and dynamic conditions, in order to prove the feasibility of the proposed design. The effects of imperfect balancing, due to the difference between the payload inertial characteristics and the theoretical/nominal ones, are investigated. Under a theoretical point of view, formal and novel derivations are provided of the necessary and sufficient conditions allowing (i) a body arbitrarily rotating in space to rest in neutral equilibrium under the action of general constant-force generators, (ii) a body pivoting about a universal joint and acted upon by a number of zero-free-length springs to exhibit constant potential energy, and (iii) a leg of a Gough/Stewart-type manipulator to operate as a constant-force generator.


2005 ◽  
Vol 29 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Flavio Firmani ◽  
Ron P. Podhorodeski

A study of the effect of including a redundant actuated branch on the existence of force-unconstrained configurations for a planar parallel layout of joints is presented1. Two methodologies for finding the force-unconstrained poses are described and discussed. The first method involves the differentiation of the nonlinear kinematic constraints of the input and output variables with respect to time. The second method makes use of the reciprocal screws associated with the actuated joints. The force-unconstrained poses of non-redundantly actuated planar parallel manipulators can be mathematically expressed by means of a polynomial in terms of the three variables that define the dimensional space of the planar manipulator, i.e., the location and orientation of the end-effector. The inclusion of redundant actuated branches leads to a system of polynomials, i.e., one additional polynomial for each redundant branch added. Elimination methods are employed to reduce the number of variables by one for every additional polynomial. This leads to a higher order polynomial with fewer variables. The roots of the resulting polynomial describe the force-unconstrained poses of the manipulator. For planar manipulators it is shown that one order of infinity of force-unconstrained configurations is eliminated for every actuated branch, beyond three, added. As an example, the four-branch revolute-prismatic-revolute mechanism (4-RPR), where the prismatic joints are actuated, is presented.


Author(s):  
Robert L. Williams ◽  
Brett H. Shelley

Abstract This paper presents algebraic inverse position and velocity kinematics solutions for a broad class of three degree-of-freedom planar in-parallel-actuated manipulators. Given an end-effector pose and rate, all active and passive joint values and rates are calculated independently for each serial chain connecting the ground link to the end-effector link. The solutions are independent of joint actuation. Seven serial chains consisting of revolute and prismatic joints are identified and their inverse solutions presented. To reduce computations, inverse Jacobian matrices for overall manipulators are derived to give only actuated joint rates. This matrix yields conditions for invalid actuation schemes. Simulation examples are given.


2003 ◽  
Vol 125 (4) ◽  
pp. 709-716 ◽  
Author(s):  
Hai-Jun Su ◽  
Peter Dietmaier ◽  
J. Michael McCarthy

This paper presents an algorithm for generating trajectories for multi-degree of freedom spatial linkages, termed constrained parallel manipulators. These articulated systems are formed by supporting a workpiece, or end-effector, with a set of serial chains, each of which imposes a constraint on the end-effector. Our goal is to plan trajectories for systems that have workspaces ranging from two through five degrees-of-freedom. This is done by specifying a goal trajectory and finding the system trajectory that comes closest to it using a dual quaternion metric. We enumerate these parallel mechanisms and formulate a general numerical approach for their analysis and trajectory planning. Examples are provided to illustrate the results.


2020 ◽  
Author(s):  
MohammadAli Mohammadkhani ◽  
Ahmad Reza Haghighi

Abstract In this paper, new hybrid robots are suggested which divided the task into a position and orientation tasks. The position mechanism controls the position whereas the orientation one manipulates the orientation of the end effector. These robots consist of a translational parallel manipulator and a rotational serial or parallel mechanism. The 3UPU or Tricept parallel manipulator and a three-axis gimbaled system or parallel shoulder manipulator are chosen for translational and rotational movements, respectively. The main goal of this paper is analyzing the development and combination of serial and parallel manipulators in order to increase their features. According to this purpose, serial and parallel mechanisms with three DOF are combined in a way to encompass six DOF space. It is shown hybrid mechanisms with less coupling between their subsystems are capable of increasing robot characteristics.


Robotica ◽  
2014 ◽  
Vol 33 (08) ◽  
pp. 1686-1703 ◽  
Author(s):  
Mohammad Reza Chalak Qazani ◽  
Siamak Pedrammehr ◽  
Arash Rahmani ◽  
Behzad Danaei ◽  
Mir Mohammad Ettefagh ◽  
...  

SUMMARYParallel mechanisms possess several advantages such as the possibilities for high acceleration and high accuracy positioning of the end effector. However, most of the proposed parallel manipulators suffer from a limited workspace. In this paper, a novel 6-DOF parallel manipulator with coaxial actuated arms is introduced. Since parallel mechanisms have more workspace limitations compared to that of serial mechanisms, determination of the workspace in parallel manipulators is of the utmost importance. For finding position, angular velocity, and acceleration, in this paper, inverse and forward kinematics of the mechanism are studied and after presenting the workspace limitations, workspace analysis of the hexarot manipulator is performed by using MATLAB software. Next, using the obtained cloud of points from simulation, the overall borders of the workspace are illustrated. Finally, it is shown that this manipulator has the important benefits of combining a large positional workspace in relation to its footprint with a sizable range of platform rotations.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Darwin Lau ◽  
Denny Oetomo ◽  
Saman K. Halgamuge

In this paper, a technique to generate the wrench-closure workspace for general case completely restrained cable driven parallel mechanisms is proposed. Existing methods can be classified as either numerically or analytically based approaches. Numerical techniques exhaustively sample the task space, which can be inaccurate due to discretisation and is computationally expensive. In comparison, analytical formulations have higher accuracy, but often provides only qualitative workspace information. The proposed hybrid approach combines the high accuracy of the analytical approach and the algorithmic versatility of the numerical approach. Additionally, this is achieved with significantly lower computational costs compared to numerical methods. It is shown that the wrench-closure workspace can be reduced to a set of univariate polynomial inequalities with respect to a single variable of the end-effector motion. In this form, the workspace can then be efficiently determined and quantitatively evaluated. The proposed technique is described for a 3 degrees of freedom (3-DOF) and a 6-DOF cable driven parallel manipulator. A detailed example in workspace determination using the proposed approach and comparison against the conventional numerical approach is presented.


2005 ◽  
Vol 128 (1) ◽  
pp. 303-310 ◽  
Author(s):  
Saeed Behzadipour ◽  
Amir Khajepour

The stiffness of cable-based robots is studied in this paper. Since antagonistic forces are essential for the operation of cable-based manipulators, their effects on the stiffness should be considered in the design, control, and trajectory planning of these manipulators. This paper studies this issue and derives the conditions under which a cable-based manipulator may become unstable because of the antagonistic forces. For this purpose, a new approach is introduced to calculate the total stiffness matrix. This approach shows that, for a cable-based manipulator with all cables in tension, the root of instability is a rotational stiffness caused by the internal cable forces. A set of sufficient conditions are derived to ensure the manipulator is stabilizable meaning that it never becomes unstable upon increasing the antagonistic forces. Stabilizability of a planar cable-based manipulator is studied as an example to illustrate this approach.


Robotica ◽  
1997 ◽  
Vol 15 (4) ◽  
pp. 353-353
Author(s):  
François Pierrot

It has been a pleasure for me to arrange this Special Issue of Robotica on Parallel Robots which provides 9 papers from authors from Asia, Oceania, North America and Europe; worldwide research on this topic is proof of the growing interest of both the scientific and the industrial areas of parallel mechanisms. I truly believe that the main reason for this enthusiasm is that parallel mechanisms research extends from theoretical mathematics and kinematics to applied robotics, and even beyond, creating new technological challenges.


Sign in / Sign up

Export Citation Format

Share Document