inverse solutions
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jingru Wang ◽  
Yuehe Ge ◽  
Zhizhang (David) Chen ◽  
Zhimeng Xu ◽  
Hai Zhang

Abstract Optical metasurfaces are researched more and more intensively for the possible realization of lightweight and compact optical devices with novel functionalities. In this paper, a new beam-steering system based on double metasurface lenses (metalenses) is proposed and developed. The proposed system is lightweight, small volume, low cost, and easy to integrate. The exact forward and inverse solutions are derived respectively using the generalized Snell’s law of refraction. Given the orientations of the double metalenses, the pointing position can be accurately determined. If the desired pointing position is given, the required metalenses’ orientations can be obtained by applied global optimization algorithms to solve nonlinear equations related to the inverse problem. The relationships of the scan region and blind zone with the system parameters are derived. The method to eliminate the blind zone is given. Comparison with double Risley-prism systems is also conducted. This work provides a new approach to control light beams.


Author(s):  
Margherita Carboni ◽  
Denis Brunet ◽  
Martin Seeber ◽  
Christoph M. Michel ◽  
Serge Vulliemoz ◽  
...  

2021 ◽  
Author(s):  
chaoyu shen ◽  
Haibo Qu ◽  
Sheng Guo ◽  
Xiao Li

Abstract The kinematic redundancy is considered as a way to improve the performance of parallel mechanism. In this paper, the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy (3-DOF PM-KR) and the influence of redundant part on the PM-KR are analyzed. Firstly, the kinematics model of the PM-KR is established. The inverse solutions, the Jacobian matrix and the workspace of the PM-KR are solved. Secondly, the influence of the redundant redundancy on the PM-KR has been analyzed. Since there exists kinematic redundancy, the PM-KR possesses the fault-tolerant performance. By locking one actuated joint or two actuated joints simultaneously, the fault-tolerant workspace are obtained. When the position of the redundant part is changed, the workspace and singularity will be changed. The results show that the kinematic redundancy can be used to avoid the singularity. Finally, the simulations are performed to prove the theoretical analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shifa Sulaiman ◽  
A.P. Sudheer

Purpose Most of the redundant dual-arm robots are singular free, dexterous and collision free compared to other robotic arms. This paper aims to analyse the workspace of redundant arms to study the manipulability. Furthermore, multi-layer perceptron (MLP) algorithm is used to determine the various joint parameters of both the upper body redundant arms. Trajectory planning of robotic arms is carried out with the help of inverse solutions obtained from the MLP algorithm. Design/methodology/approach In this paper, the kinematic equations are derived from screw theory approach and inverse kinematic solutions are determined using MLP algorithm. Levenberg–Marquardt (LM) and Bayesian regulation (BR) techniques are used as the backpropagation algorithms. The results from two backpropagation techniques are compared for determining the prediction accuracy. The inverse solutions obtained from the MLP algorithm are then used to optimize the cubic spline trajectories planned for avoiding collision between arms with the help of convex optimization technique. The dexterity of the redundant arms is analysed with the help of Cartesian workspace of arms. Findings Dexterity of redundant arms is analysed by studying the voids and singular spaces present inside the workspace of arms. MLP algorithms determine unique solutions with less computational effort using BR backpropagation. The inverse solutions obtained from MLP algorithm effectively optimize the cubic spline trajectory for the redundant dual arms using convex optimization technique. Originality/value Most of the MLP algorithms used for determining the inverse solutions are used with LM backpropagation technique. In this paper, BR technique is used as the backpropagation technique. BR technique converges fast with less computational time than LM method. The inverse solutions of arm joints for traversing optimized cubic spline trajectory using convex optimization technique are computed from the MLP algorithm.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lukas Hecker ◽  
Rebekka Rupprecht ◽  
Ludger Tebartz Van Elst ◽  
Jürgen Kornmeier

The electroencephalography (EEG) is a well-established non-invasive method in neuroscientific research and clinical diagnostics. It provides a high temporal but low spatial resolution of brain activity. To gain insight about the spatial dynamics of the EEG, one has to solve the inverse problem, i.e., finding the neural sources that give rise to the recorded EEG activity. The inverse problem is ill-posed, which means that more than one configuration of neural sources can evoke one and the same distribution of EEG activity on the scalp. Artificial neural networks have been previously used successfully to find either one or two dipole sources. These approaches, however, have never solved the inverse problem in a distributed dipole model with more than two dipole sources. We present ConvDip, a novel convolutional neural network (CNN) architecture, that solves the EEG inverse problem in a distributed dipole model based on simulated EEG data. We show that (1) ConvDip learned to produce inverse solutions from a single time point of EEG data and (2) outperforms state-of-the-art methods on all focused performance measures. (3) It is more flexible when dealing with varying number of sources, produces less ghost sources and misses less real sources than the comparison methods. It produces plausible inverse solutions for real EEG recordings from human participants. (4) The trained network needs <40 ms for a single prediction. Our results qualify ConvDip as an efficient and easy-to-apply novel method for source localization in EEG data, with high relevance for clinical applications, e.g., in epileptology and real-time applications.


Author(s):  
Xiaoping Huang ◽  
Fangyi Weng ◽  
Zhongxin Wei ◽  
M.M. Kamruzzaman

Sorting robot is a kind of artificial intelligence robot which has certain sense ability and can classify items. In the sorting industry, its appearance not only reduces the labor input, but also improves the production efficiency of the sorting industry. In this paper, a production line composed of linear Delta robot and 3-DOF robot is studied. The forward and inverse solutions are calculated by MATLAB and simulated by Solid Works. Through the visual processing function, communication function and axle card driving function of Lab VIEW software, the servo motor rotation is controlled to achieve the purpose of the end moving along the predetermined trajectory, and finally the visual sorting function is realized.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 386-426
Author(s):  
Reinhard Schlickeiser ◽  
Martin Kröger

With the vaccination against Covid-19 now available, how vaccination campaigns influence the mathematical modeling of epidemics is quantitatively explored. In this paper, the standard susceptible-infectious-recovered/removed (SIR) epidemic model is extended to a fourth compartment, V, of vaccinated persons. This extension involves the time t-dependent effective vaccination rate, v(t), that regulates the relationship between susceptible and vaccinated persons. The rate v(t) competes with the usual infection, a(t), and recovery, μ(t), rates in determining the time evolution of epidemics. The occurrence of a pandemic outburst with rising rates of new infections requires k+b<1−2η, where k=μ(0)/a(0) and b=v(0)/a(0) denote the initial values for the ratios of the three rates, respectively, and η≪1 is the initial fraction of infected persons. Exact analytical inverse solutions t(Q) for all relevant quantities Q=[S,I,R,V] of the resulting SIRV model in terms of Lambert functions are derived for the semi-time case with time-independent ratios k and b between the recovery and vaccination rates to the infection rate, respectively. These inverse solutions can be approximated with high accuracy, yielding the explicit time-dependences Q(t) by inverting the Lambert functions. The values of the three parameters k, b and η completely determine the reduced time evolution of the SIRV-quantities Q(τ). The influence of vaccinations on the total cumulative number and the maximum rate of new infections in different countries is calculated by comparing with monitored real time Covid-19 data. The reduction in the final cumulative fraction of infected persons and in the maximum daily rate of new infections is quantitatively determined by using the actual pandemic parameters in different countries. Moreover, a new criterion is developed that decides on the occurrence of future Covid-19 waves in these countries. Apart from in Israel, this can happen in all countries considered.


Sign in / Sign up

Export Citation Format

Share Document