three degree of freedom
Recently Published Documents


TOTAL DOCUMENTS

811
(FIVE YEARS 147)

H-INDEX

38
(FIVE YEARS 4)

Author(s):  
An-Ding Zhu ◽  
Guan-Nan He ◽  
Shun-Chang Duan ◽  
Wei-Han Li ◽  
Xian-Xu Bai

Abstract This article formulates a front-wheel-drive three-degree-of-freedom (3DOF) four-wheel planar vehicle model with the Magic Formula tire model. The state variables' evolutions of the model, i.e., trajectories of the model under acceleration and deacceleration conditions, are analyzed. The process of evolution is divided into desirable and undesirable phases based on the response characteristics of the vehicle to the driver input during the process. The trajectories are categorized as unsaturated trajectories and saturated trajectories by the existence of saturated tires during these phases. The response of state variables to driver input under acceleration conditions during undesirable phases are zero or even opposite, while the response of undesirable phases under the deacceleration condition is partially positive. Besides, the existing yaw rate safety envelope is recalibrated by using a longitudinal and lateral tire force coupling model. A more accurate yaw rate safety envelope is obtained from the given driver input. Furthermore, a longitudinal speed safety envelope is proposed according to the relationships among slip angle, yaw rate, and longitudinal speed. These safety envelopes are determined by driver input, tire properties, and grip condition. After overlaying yaw rate and longitudinal speed safety envelopes in the state space, the feasibility of using the safety envelope as trajectory classification criteria is discussed.


Author(s):  
Javad Taghipour ◽  
Jiaying Zhang ◽  
Alexander D. Shaw ◽  
Mike I. Friswell ◽  
Huayuan Gu ◽  
...  

AbstractWith increasing demand for rotor blades in engineering applications, improving the performance of such structures using morphing blades has received considerable attention. Resonant passive energy balancing (RPEB) is a relatively new concept introduced to minimize the required actuation energy. This study investigates RPEB in morphing helicopter blades with lag–twist coupling. The structure of a rotating blade with a moving mass at the tip is considered under aerodynamic loading. To this end, a three-degree-of-freedom (3DOF) reduced-order model is used to analyse and understand the complicated nonlinear aeroelastic behaviour of the structure. This model includes the pitch angle and lagging of the blade, along with the motion of the moving mass. First, the 3DOF model is simplified to a single-degree-of-freedom model for the pitch angle dynamics of the blade to examine the effect of important parameters on the pitch response. The results demonstrate that the coefficient of lag–twist coupling and the direction of aerodynamic moment on the blade are two parameters that play important roles in controlling the pitch angle, particularly the phase. Then, neglecting the aerodynamic forces, the 3DOF system is studied to investigate the sensitivity of its dynamics to changes in the parameters of the system. The results of the structural analysis can be used to tune the parameters of the blade in order to use the resonant energy of the structure and to reduce the required actuation force. A sensitivity analysis is then performed on the dynamics of the 3DOF model in the presence of aerodynamic forces to investigate the controllability of the amplitude and phase of the pitch angle. The results show that the bend–twist coupling and the distance between the aerodynamic centre and the rotation centre (representing the direction and magnitude of aerodynamic moments) play significant roles in determining the pitch dynamics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shao-Feng Xu ◽  
Zhu-Long Xu ◽  
Kuo-Chih Chuang

In this work, without introducing mass-in-mass units or inertial amplification mechanisms, we show that two Bragg atomic chains can form an acoustic metamaterial that possesses different types of bandgaps other than Bragg ones, including local resonance and inertial amplification-like bandgaps. Specifically, by coupling masses of one monatomic chain to the same masses of a diatomic or triatomic chain, hybrid bandgaps can be generated and further be switched through the adjustment of the structural parameters. To provide a tuning guidance for the hybrid bandgaps, we derived an analytical transition parameter (p-value) for the mass-coupled monatomic/diatomic chain and analytical discriminants for the mass-coupled monatomic/triatomic chain. In our proposed mass-coupled monatomic/triatomic chain system, each set of analytical discriminants determines a hybrid bandgap state and a detailed examination reveals 14 different bandgap states. In addition to bandgap switching, the analytical p-value and discriminants can also be used as a guide for designing the coupled-chain acoustic metamaterials. The relations between the mass-coupled monatomic/triatomic chain system and a three-degree-of-freedom (DOF) inertial amplification system further indicate that the band structure of the former is equivalent to that of the latter through coupling masses by negative dynamic stiffness springs.


2021 ◽  
Vol 11 (22) ◽  
pp. 10772
Author(s):  
Wan Wenkang ◽  
Feng Jingan ◽  
Song Bao ◽  
Li Xinxin

The distributed drive arrangement form has better potential for cooperative control of dynamics, but this drive arrangement form increases the parameter acquisition workload of the control system and increases the difficulty of vehicle control accordingly. In order to observe the vehicle motion state accurately and in real-time, while reducing the effect of uncertainty in noise statistical information, the vehicle state observer is designed based on interacting multiple model theory with square root cubature Kalman filter (IMM-SCKF). The IMM-SCKF algorithm sub-model considers different state noise and measurement noise, and the introduction of the square root filter reduces the complexity of the algorithm while ensuring accuracy and real-time performance. To estimate the vehicle longitudinal, lateral, and yaw motion states, the algorithm uses a three degree of freedom (3-DOF) vehicle dynamics model and a nonlinear brush tire model, which is then validated in a Carsim-Simulink co-simulation platform for multiple operating conditions. The results show that the IMM-SCKF algorithm’s fusion output results can effectively follow the sub-model with smaller output errors, and that the IMM-SCKF algorithm’s results are superior to the traditional SCKF algorithm’s results.


2021 ◽  
Author(s):  
chaoyu shen ◽  
Haibo Qu ◽  
Sheng Guo ◽  
Xiao Li

Abstract The kinematic redundancy is considered as a way to improve the performance of parallel mechanism. In this paper, the kinematics performance of a three degree-of-freedom parallel mechanism with kinematic redundancy (3-DOF PM-KR) and the influence of redundant part on the PM-KR are analyzed. Firstly, the kinematics model of the PM-KR is established. The inverse solutions, the Jacobian matrix and the workspace of the PM-KR are solved. Secondly, the influence of the redundant redundancy on the PM-KR has been analyzed. Since there exists kinematic redundancy, the PM-KR possesses the fault-tolerant performance. By locking one actuated joint or two actuated joints simultaneously, the fault-tolerant workspace are obtained. When the position of the redundant part is changed, the workspace and singularity will be changed. The results show that the kinematic redundancy can be used to avoid the singularity. Finally, the simulations are performed to prove the theoretical analysis.


2021 ◽  
Vol 9 (10) ◽  
pp. 1126
Author(s):  
Meiyi Wu ◽  
Anmin Zhang ◽  
Miao Gao ◽  
Jiali Zhang

Ship motion planning constitutes the most critical part in the autonomous navigation systems of marine autonomous surface ships (MASS). Weather and ocean conditions can significantly affect their navigation, but there are relatively few studies on the influence of wind and current on motion planning. This study investigates the motion planning problem for USV, wherein the goal is to obtain an optimal path under the interference of the navigation environment (wind and current), and control the USV in order to avoid obstacles and arrive at its destination without collision. In this process, the influences of search efficiency, navigation safety and energy consumption on motion planning are taken into consideration. Firstly, the navigation environment is constructed by integrating information, including the electronic navigational chart, wind and current field. Based on the environmental interference factors, the three-degree-of-freedom kinematic model of USVs is created, and the multi-objective optimization and complex constraints are reasonably expressed to establish the corresponding optimization model. A multi-objective optimization algorithm based on HA* is proposed after considering the constraints of motion and dynamic and optimization objectives. Simulation verifies the effectiveness of the algorithm, where an efficient, safe and economical path is obtained and is more in line with the needs of practical application.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 248
Author(s):  
Yuwei Wu ◽  
Min Yu ◽  
Qingsong He ◽  
David Vokoun ◽  
Guoxiao Yin ◽  
...  

In this work, a helical ionic polymer metal composite (IPMC) was fabricated by thermal treatment in a mold with helix grooves. The axial actuation behaviors of the helical IPMC actuator were observed, and the electromechanical and electrochemical characteristics were evaluated. The experimental results showed that as the voltage increased and the frequency decreased, the axial displacement, axial force, and electric current of the actuator all increased. Compared with square wave and sinusoidal signals, the actuator exhibited the most satisfactory motion under the direct current (DC) signal. For the electrochemical test, as the scanning rate decreased, the gravimetric specific capacitance increased. Within a suitable voltage range, the actuator was chemically stable. In addition, we coupled the Electrostatics module, Transport of Diluted Species module, and Solid Mechanics module in COMSOL Multiphysics software to model and analyze the helical IPMC actuator. The simulation data obtained were in good agreement with the experimental data. Finally, by using three helical IPMC actuators as driving components, an innovative three-degree-of-freedom (3-DOF) micro-parallel platform was designed, and it could realize a complex coupling movement of pitch, roll, and yaw under the action of an electric field. This platform is expected to be used in micro-assembly, flexible robots, and other fields.


Sign in / Sign up

Export Citation Format

Share Document