industrial areas
Recently Published Documents


TOTAL DOCUMENTS

912
(FIVE YEARS 293)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Vol 14 (2) ◽  
pp. 919
Author(s):  
Hyeryeong Jeong ◽  
Kongtae Ra

Pollution characteristics and ecological risks for metals in non-magnetic and magnetic road dust from steel industrial areas were investigated by applying a magnetic separation method. Metal (except for Al, Li, Ti, As, and Sb) concentrations in the magnetic road dust were 1.2 (Sn) to 7.8 (Fe) times higher than those in the non-magnetic road dust. For the magnetic road dust, the geo-accumulation index revealed a strongly to extremely polluted status for Cr, Zn, Cd, and Sb, a strongly polluted status for Mn, Cu, and Pb, and a moderately to strongly polluted status for Fe, Ni, Mo, and Hg. This result indicates that the dominant metal pollution sources of road dust in industrial areas were the traffic activities of heavy-duty vehicles. The mean content of magnetic particles accounted for 44.7% of the total road dust. The metal loadings in the magnetic road dust were 86% (Fe), 77% (Cr), 67% (Mn), 86% (Ni), 76% (Cu), 72% (Zn), 64% (Mo), and 62% (Cd), respectively. Removal of the magnetic fraction from road dust using magnetic separation techniques not only reduces metal contamination but can also improve effective road cleaning strategies or reduce waste generation.


2022 ◽  
pp. 107-131
Author(s):  
Tali Hatuka ◽  
Eran Ben-Joseph
Keyword(s):  

2021 ◽  
Vol 1 (4) ◽  
pp. 22-26

Abstract: Spider webs were gathered from residential and industrial areas to found the order of heavy suspended metals in the air. The treatment of spider webs were done with nitric acid and digested by atomic absorption spectrophotometer before analysis (AAS). The average value of several heavy metals concentration were observed to be meaningfully great at p < 0.05 in suspended ingredients in industrial zones including, Cadmium (Cd) 0.15 ± 0.05 and Lead (Pb) 0.53 ± 0.09 µgg-1, respectively. The average values of concentration of Copper (Cu), Nickel (Ni) and Zinc (Zn) were not meaningfully changed from residential, industrial and control zones. It was observed that, the heavy metals concentration reduces when the web specimens were collected more away from the road.


Recently, the degradation of concrete has become a serious problem worldwide and one of the principle factors of degradation is the carbonation process. It is well established that environmental conditions affect the carbonation progress of concrete among the most important factors that can greatly affect the carbonation resistance of concrete are relative humidity (RH) and temperature. Carbonation has become a threat to concrete structures, especially in urban and industrial areas. Thus, it is necessary to have a proper design to maintain the structure's stability against degradation caused by carbonation. Therefore, this study was conducted to evaluate the effects of different environmental and climatic conditions on the carbonation rate of concrete. The specimens were prepared using OPC and fly ash (FA). After 28 days of air curing, specimens were exposed to different climate conditions under sheltered and un-sheltered conditions. The carbonation tests were conducted at the ages of 6 and 12 months. It was found that the carbonation rates were significantly influenced by the climate and environmental conditions; the specimens exposed to a relatively dry environment and low annual precipitations have shown higher carbonation during one-year exposure. Moreover, in unsheltered conditions, the annual precipitation significantly affects the carbonation rate of concrete. Furthermore, it was observed that a 20% replacement of FA does not enhance the carbonation resistance of concrete.


Jurnal NERS ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 177
Author(s):  
Lasiyati Yuswo Yani ◽  
Raras Merbawani ◽  
Asef Wildan Munfadlila

Introduction: Pregnant women living in industrial areas are exposed to higher levels of toxic substances, pollutants, and other chemicals; this is exacerbated by the pandemic conditions. Improving the nutritional status of pregnant women can be pursued through nutritional education for pregnant women. This study aimed to determine the differences in nutrition fulfilment patterns of pregnant women, before and after nutrition education.Methods: This study used quasi-experimental research with a one group pre post-test design. The samples were 51 pregnant women in industrial areas. Treatment in this study was nutrition education by empowering health cadres. The instrument of this research is an observation sheet that has been tested for validity and reliability. Data analysis used a statistical paired t-test.Results: Knowledge of pregnant women increased by 5.21% after treatment, and behaviour increased by 5.2%. The t-test showed that the the nutrition education model for pregnant women in industrial areas could significantly increase the knowledge (p-value = 0.000) and improve the behaviour (p-value = 0.000) of pregnant women.Conclusion: Nutrition education for pregnant women provided by health cadres is proven to increase knowledge of pregnant women about nutrition and behaviour of fulfilling nutrition during pregnancy in a pandemic situation. During the pandemic, pregnant women can increase knowledge related to nutrition fulfilment through the assistance of health cadres without worrying about being exposed to viruses from care providers.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 328
Author(s):  
Annisa Utami Rauf ◽  
Anwar Mallongi ◽  
Kiyoung Lee ◽  
Anwar Daud ◽  
Muhammad Hatta ◽  
...  

Air quality deterioration is a major environmental problem in Indonesia. This study evaluated the levels and health risks of potentially toxic elements (PTEs) in Maros Regency, Indonesia. Total suspended particulate matter was collected from industrial areas for PTE (Al, Pb, Cr, Cu, Ni, As and Zn) analysis using inductively coupled plasma optical emission spectrometry (ICP-OES). Samples were collected from six critical areas in the Bantimurung region as that is where marble, cement and limestone industries are located. A calculation of the non-carcinogenic and cancer risks was performed to determine the potential health exposures in adults and children. A Monte Carlo simulation with 10,000 iterations and a sensitivity analysis was carried out to identify the risk probability and the most sensitive variable contributing to cancer risk from PTE exposure in humans. The results showed that the concentration of PTEs decreased in the order of Zn > Al > Cr > Pb > Cu > Ni > As in the wet season, and Zn > Al > Pb > As > Cr > Cu > Ni in the dry season. The hazard index (HI) value for children was 2.12, indicating a high non-carcinogenic risk for children. The total cancer risk (TCR) values in adults and children were 3.11 × 10−5 and 1.32 × 10−4, respectively, implying that both are at risk for developing cancer. The variables with the most contribution to cancer risk from As, Cr and Pb exposure in adults and children were As concentration (33.9% and 41.0%); exposure duration (ED) (34.3%) and SA (40.7%); and SA (98.7 % and 45.4%), respectively. These findings could be used as the scientific basis for public health intervention and to raise awareness of the harmful health effects of particulate bound PTEs


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1598
Author(s):  
Cheng Chen ◽  
Lingrui Wang ◽  
Yunjiang Zhang ◽  
Shanshan Zheng ◽  
Lili Tang

From April to September 2018, five sampling sites were selected in Lianyungang City for volatile organic compounds (VOCs) analysis, including two sampling sites in the urban area (Lianyungang City Environmental Monitoring Supersite and Mine Design Institute), one sampling site in the industrial area (Deyuan Pharmaceutical Factory), and two sampling sites from the suburb (Hugou Management Office and YuehaiLou). The results showed that the mean VOCs concentration followed this pattern: industrial area (36.06 ± 12.2 µg m−3) > urban area (33.47 ± 13.0 µg m−3) > suburban area (27.68 ± 9.8 µg m−3). The seasonal variation of the VOCs trend in the urban and suburban areas was relatively consistent, which was different from that in industrial areas. The concentration levels of VOCs components in urban and industrial areas were relatively close, which were significantly higher than that in suburban areas. The possible sources and relative importance of VOCs in Lianyungang City atmosphere were measured by the characteristic ratio of toluene/benzene (T/B), ethane/acetylene (E/E) and isopentane/TVOCs. The contribution of traffic sources to the VOCs in Lianyungang City was significant (T/B ~ 2), and there were obvious aging phenomena in the five sampling sites (E/E > 4). The ratio of isopentane/TVOCs in the contribution of gasoline volatilization sources in urban and suburban areas was significantly bigger than that in industrial areas. According to the maximum incremental reactivity (MIR) method, aromatics (40.32–58.09%) contributed the most to ozone formation potential (OFP) at the five sampling sites. The top 10 OFP species showed that controlling n-hexane and aromatics, such as benzene, toluene, xylene, and trimethylbenzene in Lianyungang City can effectively control ozone generation. Nineteen typical VOCs components were selected and the sources of VOCs from five sampling points were analyzed by the principal component analysis (PCA) model. The sources of VOCs in different areas in Lianyungang were relatively consistent. Five sources were analyzed at the two sampling sites in the urban area: industrial emission + plants, vehicle exhaust, fuel evaporation, combustion and industrial raw materials. Four sources were analyzed in the industrial area: industrial emission + plants, vehicle exhaust, fuel evaporation and combustion. Five sources were analyzed at the two sampling sites in the suburban area: industrial emission + plants, vehicle exhaust, fuel evaporation, combustion and solvent usage.


Sign in / Sign up

Export Citation Format

Share Document