Periodic Solutions for Coupled Van Der Pol Oscillators of Two-Degree-of-Freedom Solved by Homotopy Analysis Method

Author(s):  
Wei Zhang ◽  
Youhua Qian ◽  
Qian Wang

Innumerable engineering problems can be described by multi-degree-of-freedom (MDOF) nonlinear dynamical systems. The theoretical modelling of such systems is often governed by a set of coupled second-order differential equations. Albeit that it is extremely difficult to find their exact solutions, the research efforts are mainly concentrated on the approximate analytical solutions. The homotopy analysis method (HAM) is a useful analytic technique for solving nonlinear dynamical systems and the method is independent on the presence of small parameters in the governing equations. More importantly, unlike classical perturbation technique, it provides a simple way to ensure the convergence of solution series by means of an auxiliary parameter ħ. In this paper, the HAM is presented to establish the analytical approximate periodic solutions for two-degree-of-freedom coupled van der Pol oscillators. In addition, comparisons are conducted between the results obtained by the HAM and the numerical integration (i.e. Runge-Kutta) method. It is shown that the higher-order analytical solutions of the HAM agree well with the numerical integration solutions, even if time t progresses to a certain large domain in the time history responses.

2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
F. A. Godínez ◽  
M. A. Escobedo ◽  
M. Navarrete

The homotopy analysis method is used to obtain analytical solutions of the Rayleigh equation for the radial oscillations of a multielectron bubble in liquid helium. The small order approximations for amplitude and frequency fit well with those computed numerically. The results confirm that the homotopy analysis method is a powerful and manageable tool for finding analytical solutions of strongly nonlinear dynamical systems.


Author(s):  
W. Zhang ◽  
Y. H. Qian ◽  
M. H. Yao ◽  
S. K. Lai

In reality, the behavior and nature of nonlinear dynamical systems are ubiquitous in many practical engineering problems. The mathematical models of such problems are often governed by a set of coupled second-order differential equations to form multi-degree-of-freedom (MDOF) nonlinear dynamical systems. It is extremely difficult to find the exact and analytical solutions in general. In this paper, the homotopy analysis method is presented to derive the analytical approximation solutions for MDOF dynamical systems. Four illustrative examples are used to show the validity and accuracy of the homotopy analysis and modified homotopy analysis methods in solving MDOF dynamical systems. Comparisons are conducted between the analytical approximation and exact solutions. The results demonstrate that the HAM is an effective and robust technique for linear and nonlinear MDOF dynamical systems. The proof of convergence theorems for the present method is elucidated as well.


2009 ◽  
Vol 19 (09) ◽  
pp. 2823-2869 ◽  
Author(s):  
Z. E. MUSIELAK ◽  
D. E. MUSIELAK

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rössler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Y. H. Qian ◽  
S. M. Chen ◽  
L. Shen

The extended homotopy analysis method (EHAM) is presented to establish the analytical approximate solutions for two-degree-of-freedom (2-DOF) coupled van der Pol-Duffing oscillator. Meanwhile, the comparisons between the results of the EHAM and standard Runge-Kutta numerical method are also presented. The results demonstrate that the analytical approximate solutions of the EHAM agree well with the numerical integration solutions. For EHAM as an analytical approximation method, we are not sure whether it can apply to all of the nonlinear systems; we can only verify its effectiveness through specific cases. As a result of the existence of nonlinear terms, we must study different types of systems, no matter from the complication of calculation and physical significance.


Sign in / Sign up

Export Citation Format

Share Document