Disassembly Process Planning Tradeoffs for Product Maintenance

Author(s):  
Sara Behdad ◽  
Deborah Thurston

The problem addressed in this paper is disassembly sequence planning for the purposes of maintenance or component upgrading, which is an integral part of the remanufacturing process. This involves disassembly, component repair or replacement, and reassembly. Each of these steps incurs cost as well as the probability of damage during the process. This paper presents a method for addressing these tradeoffs, as well as the uncertainty associated with them. A procedure for identifying the best sequence of disassembly operations for maintenance and/or component upgrade is presented. It considers both disassembly and reassembly costs and uncertainties. Graph-based integer linear programming combined with multiattribute utility analysis is employed to identify the best set of tradeoffs among (a) disassembly time (and resulting cost) under uncertainty, (b) the probability of not incurring damage during disassembly, (c) reassembly time (and resulting cost) and (d) the probability of not incurring damage during reassembly. An example of a solar heating system is used to illustrate the method.

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Sara Behdad ◽  
Deborah Thurston

The problem addressed in this paper is disassembly sequence planning for the purposes of maintenance or component upgrading, which is an integral part of the remanufacturing process. This involves disassembly, component repair or replacement, and reassembly. Each of these steps incurs cost as well as the probability of damage during the process. This paper presents a method for addressing these tradeoffs, as well as the uncertainty associated with them. A procedure for identifying the best sequence of disassembly operations for maintenance and/or component upgrade is presented. It considers both disassembly and reassembly costs and uncertainties. Graph-based integer linear programming combined with multi-attribute utility analysis is employed to identify the best set of tradeoffs among (a) disassembly time (and resulting cost) under uncertainty, (b) the probability of not incurring damage during disassembly, (c) reassembly time (and resulting cost), and (d) the probability of not incurring damage during reassembly. An example of a solar heating system is used to illustrate the method.


2021 ◽  
Author(s):  
Fengfu Yin ◽  
Xiaodong Wang ◽  
Hongrui Li ◽  
Huadong Sun ◽  
Suiran Yu ◽  
...  

Abstract To solve the problems of environmental pollution and waste of resources caused by used mobile phones, the study of objective disassembly sequence planning is carried out for used mobile phones. In view of the connection of mobile phone parts with multiple parts and the need to disassemble components, the concepts of containment, exclusion, and components are integrated into the hybrid graph. An improved hybrid graph is proposed and the improved hybrid graph disassembly model suitable for mobile phone disassembly is established. The ant colony algorithm is used to search for the optimal disassembly sequence, with the objective of minimum disassembly time. Finally, the improved hybrid graph disassembly model is applied to obtain the disassembly solution of HUAWEI Honor 6. The experimental results demonstrate that the disassembly sequence generated by the improved hybrid graph disassembly model can describe the actual disassembly process of disassembling components with less disassembly time.


Author(s):  
Fei Tao ◽  
Luning Bi ◽  
Ying Zuo ◽  
A. Y. C. Nee

Disassembly is a very important step in recycling and maintenance, particularly for energy saving. However, disassembly sequence planning (DSP) is a challenging combinatorial optimization problem due to complex constraints of many products. This paper considers partial and parallel disassembly sequence planning for solving the degrees-of-freedom in modular product design, considering disassembly time, cost, and energy consumption. An automatic self-decomposed disassembly precedence matrix (DPM) is designed to generate partial/parallel disassembly sequence for reducing complexity and improving efficiency. A Tabu search-based hyper heuristic algorithm with exponentially decreasing diversity management strategy is proposed. Compared with the low-level heuristics, the proposed algorithm is more efficient in terms of exploration ability and improving energy benefits (EBs). The comparison results of three different disassembly strategies prove that the partial/parallel disassembly has a great advantage in reducing disassembly time, and improving EBs and disassembly profit (DP).


Sign in / Sign up

Export Citation Format

Share Document