A Smooth Contact Algorithm Using Cubic Spline Surface Interpolation for Rigid and Flexible Bodies

Author(s):  
Juhwan Choi ◽  
Jin Hwan Choi

The contact analysis of multi-flexible-body dynamics (MFBD) has been an important issue in the area of computational dynamics because the realistic dynamic analysis of many mechanical systems includes the contacts among rigid and flexible bodies. But, until now, the contact analysis in the multi-flexible-body dynamics has still remained as a big, challenging area. Especially, the most of contact algorithms have been developed based on the facetted triangles. As a result, the contact force based on the facetted surface was not accurate and smooth because the geometrical error is already included in the contact surface representation stage. This kind of error can be very important in the precise mechanism such as gear contact or cam-valve contact problems. In order to resolve this problem, this study suggests a cubic spline surface representation method and related contact algorithms. The proposed contact algorithms are using the compliant contact force model based on the Hertzian contact theory. In order to evaluate the smooth contact force, the penetration depth and contact normal directions are evaluated by using the cubic spline surface interpolation. Also, for the robust and efficient contact algorithm development, the contact algorithms are divided into four main parts which are a surface representation, a pre-search, a detailed search and a contact force generation. In the surface representation part, we propose a smooth surface representation method which can be used for smooth rigid and flexible bodies. In the pre-search, the algorithm performs collision detection and composes the expected contact pairs for the detailed search. In the detailed search, the penetration depth and contact reference frame are calculated with the cubic spline surface interpolation in order to generate the accurate and smooth contact force. Finally in the contact force generation part, we evaluate the contact force and Jacobian matrix for the implicit time integrator.

ScienceAsia ◽  
2014 ◽  
Vol 40S (1) ◽  
pp. 22 ◽  
Author(s):  
Muhammad Abbas ◽  
Ahmad Abd Majid ◽  
Mohd Nain Hj Awang ◽  
Jamaludin Md Ali

1995 ◽  
Vol 24 (2) ◽  
pp. 224-229
Author(s):  
F.H. Cheng ◽  
G.W. Wasilkowski ◽  
J.Y. Wang ◽  
C.M. Zhang ◽  
W.P. Wang

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jia Liu ◽  
Ji Zhao ◽  
Xu Yang ◽  
Jiming Liu ◽  
Xingtian Qu ◽  
...  

A reconstruction algorithm for blade surface from less measured points of section curves is given based on B-spline surface interpolation. The less measured points are divided into different segments by the key geometric points and throat points which are defined according to design concepts. The segmentations are performed by different fitting algorithms with consideration of curvature continuity as their boundary condition to avoid flow disturbance. Finally, a high-quality reconstruction surface model is obtained by using the B-spline curve meshes constructed by paired points. The advantage of this algorithm is the simplicity and effectivity reconstruction of blade surface to ensure the aerodynamic performance. Moreover, the obtained paired points can be regarded as measured points to measure and reconstruct the blade surface directly. Experimental results show that the reconstruction blade surface is suitable for precisely representing blade, evaluating machining accuracy, and analyzing machining allowance.


Author(s):  
Siu Vay Lo ◽  
Nha Thanh Nguyen ◽  
Minh Ngoc Nguyen ◽  
Truong Tich Thien

In the MPM algorithm, all the particles are formulated in a single-valued velocity field hence the non-slip contact can be satisfied without any contact treatment. However, in some impact and penetration problems, the non-slip contact condition is not appropriate and may even yield unreasonable results, so it is important to overcome this drawback by using a contact algorithm in the MPM. In this paper, the variation of contact force with respect to time caused by the impact is investigated. The MPM using the Lagrange basis function, so causing the cell-crossing phenomenon when a particle moves from one cell to another. The essence of this phenomenon is due to the discontinuity of the gradient of the linear basis function. The accuracy of the results is therefore also affected. The high order B-spline MPM is used in this study to overcome the cell-crossing error. The BSMPM uses higher-order B-spline functions to make sure the derivatives of the shape functions are continuous, so that alleviate the error. The algorithm of MPM and BSMPM has some differences in defining the computational grid. Hence, the original contact algorithm in MPM needs to be modified to be suitable in order to use in the BSMPM. The purpose of this study is to construct a suitable contact algorithm for BSMPM and then use it to investigate the contact force caused by impact. Some numerical examples are presented in this paper, the impact of two circular elastic disks and the impact of a soft circular disk into a stiffer rectangular block. All the results of contact force obtained from this study are compared with finite element results and perform a good agreement, the energy conservation is also considered.


Sign in / Sign up

Export Citation Format

Share Document