On the Issue of Redundancy in the Large Rotation Vector Formulation

Author(s):  
Jieyu Ding ◽  
Michael Wallin ◽  
Cheng Wei ◽  
Antonio M. Recuero ◽  
Ahmed A. Shabana

In the large rotation vector formulations (LRVF), two independent interpolations are used in the nonlinear large displacement analysis of beams. This kinematic description leads to a fundamental redundancy problem. This paper examines this fundamental issue and demonstrates that the use of two geometrically independent meshes can lead to coordinate and geometric invariant redundancy that cannot be solved using constraints or forces. It is demonstrated in this paper that the two geometry meshes can define different space curves, which can differ by arbitrary rigid body displacements. The material points of the two meshes occupy different positions in the deformed configuration, and as a consequence, the geometries of the two meshes can differ significantly. Simple examples are presented in order to shed light on these fundamental issues.

Author(s):  
Ahmed A. Shabana ◽  
Hussien A. Hussien ◽  
José L. Escalona

Abstract There are three basic finite element formulations, which are used in multibody dynamics. These are the floating frame reference approach, the incremental method and the large rotation vector approach. In the floating frame of reference and incremental formulations, the slopes are assumed small in order to define infinitesimal rotations that can be treated and transformed as vectors. This description, however, limits the use of some important elements such as beams and plates in a wide range of large displacement applications. As demonstrated in some recent publications, if infinitesimal rotations are used as nodal coordinates, the use of the finite element incremental formulation in the large reference displacement analysis does not lead to exact modeling of the rigid body inertia when the structures rotate as rigid bodies. In this paper, a new and simple finite element procedure that employs the mathematical definition of the slope and uses it to define the element coordinates instead of the infinitesimal and finite rotations is developed for large rotation and deformation problems. By using this description and by defining the element coordinates in the global system, not only the need for performing coordinate transformation is avoided, but also a simple expression for the inertia forces is obtained. Furthermore, the resulting mass matrix is constant and it is the same matrix that appears in linear structural dynamics. It is demonstrated in this paper, that this coordinate description leads to exact modeling of the rigid body inertia when the structure rotate as rigid bodies. Nonetheless, the stiffness matrix becomes nonlinear function of time even in the case of small displacements. The method presented in this paper differs from previous large rotation vector formulations in the sense that the inertia forces, the kinetic energy, and the strain energy are not expressed in terms of any orientation coordinates, and therefore, the method does not require interpolation of finite rotations. While the use of the formulation is demonstrated using a simple planar beam element, the generalization of the method to other element types and to the three dimensional case is straightforward. Using the finite element procedure presented in this paper, beams and plates can be treated as isoparametric elements.


1986 ◽  
Vol 108 (2) ◽  
pp. 165-174 ◽  
Author(s):  
C. C. Rankin ◽  
F. A. Brogan

A new corotational procedure is developed which enables existing finite element formulations to be used in problems that contain arbitrarily large rotations. Through the use of a nonsingular large rotation vector, the contribution of the rigid body motion of the element to the total displacement field is removed before element computations are performed, with the result that almost any element can be easily upgraded to handle large rotations. This paper contains a derivation of the theory, an outline of the implementation into the STAGS code, and a demonstration of performance for problems involving large rotations and moderate strains.


Author(s):  
Ahmed A. Shabana

Several finite element formulations used in the analysis of large rotation and large deformation problems employ independent interpolations for the displacement and rotation fields. As explained in this paper, three rotations defined as field variables can be sufficient to define a space curve that represents the element centerline. The frame defined by the rotations can differ from the Frenet frame of the space curve defined by the same rotation field and, therefore, such a rotation-based representation can provide measure of twist shear deformations and captures the rotation of the beam about its axis. However, the space curve defined using the rotation interpolation has a geometry that can significantly differ from the geometry defined by an independent displacement interpolation. Furthermore, the two different space curves defined by the two different interpolations can differ by a rigid body motion. Therefore, in these formulations, the uniqueness of the kinematic representation is an issue unless nonlinear algebraic constraint equations are used to establish relationships between the two independent displacement and rotation interpolations. Nonetheless, significant geometric and kinematic differences between two independent space curves cannot always be reduced by using restoring elastic forces. Because of the nonuniqueness of such a finite element representation, imposing continuity on higher derivatives such as the curvature vector is not straight forward as in the case of the absolute nodal coordinate formulation (ANCF) that defines unique displacement and rotation fields. ANCF finite elements allow for imposing curvature continuity without increasing the order of the interpolation or the number of nodal coordinates, as demonstrated in this paper. Furthermore, the relationship between ANCF finite elements and the B-spline representation used in computational geometry can be established, allowing for a straight forward integration of computer aided design and analysis.


Author(s):  
Y. F. Zhao ◽  
S. T. Tan ◽  
T. N. Wong ◽  
W. J. Chen

Abstract A constrained finite element method for modelling cloth deformation is developed. The bending deformation and the geometric constraint of developable surfaces of the cloth objects are considered. The representation of large rotation and the motion of rigid body are described using the current coordinates with the geometric constraint. The effectiveness of the present method is verified by comparing the thread deformation with the exact solution of catenary. Several examples are given to show that the proposed method converges quickly and is thus computationally efficient.


Sign in / Sign up

Export Citation Format

Share Document