An Element Independent Corotational Procedure for the Treatment of Large Rotations

1986 ◽  
Vol 108 (2) ◽  
pp. 165-174 ◽  
Author(s):  
C. C. Rankin ◽  
F. A. Brogan

A new corotational procedure is developed which enables existing finite element formulations to be used in problems that contain arbitrarily large rotations. Through the use of a nonsingular large rotation vector, the contribution of the rigid body motion of the element to the total displacement field is removed before element computations are performed, with the result that almost any element can be easily upgraded to handle large rotations. This paper contains a derivation of the theory, an outline of the implementation into the STAGS code, and a demonstration of performance for problems involving large rotations and moderate strains.

Author(s):  
Ahmed A. Shabana

Several finite element formulations used in the analysis of large rotation and large deformation problems employ independent interpolations for the displacement and rotation fields. As explained in this paper, three rotations defined as field variables can be sufficient to define a space curve that represents the element centerline. The frame defined by the rotations can differ from the Frenet frame of the space curve defined by the same rotation field and, therefore, such a rotation-based representation can provide measure of twist shear deformations and captures the rotation of the beam about its axis. However, the space curve defined using the rotation interpolation has a geometry that can significantly differ from the geometry defined by an independent displacement interpolation. Furthermore, the two different space curves defined by the two different interpolations can differ by a rigid body motion. Therefore, in these formulations, the uniqueness of the kinematic representation is an issue unless nonlinear algebraic constraint equations are used to establish relationships between the two independent displacement and rotation interpolations. Nonetheless, significant geometric and kinematic differences between two independent space curves cannot always be reduced by using restoring elastic forces. Because of the nonuniqueness of such a finite element representation, imposing continuity on higher derivatives such as the curvature vector is not straight forward as in the case of the absolute nodal coordinate formulation (ANCF) that defines unique displacement and rotation fields. ANCF finite elements allow for imposing curvature continuity without increasing the order of the interpolation or the number of nodal coordinates, as demonstrated in this paper. Furthermore, the relationship between ANCF finite elements and the B-spline representation used in computational geometry can be established, allowing for a straight forward integration of computer aided design and analysis.


Author(s):  
W S Hwang ◽  
D H Lee

Frequency response function (FRF) based substructure analysis can predict the response of complex systems using the FRFs of substructures. It combines the FRFs of each substructure derived from finite element analysis or experiments depending on the situation. In general, the substructure with the excitation is separated from the others by rubber bushes to prevent the transmission of vibration from the source to the main structure. In this case, the substructure with the excitation shows rigid body motion up to the mid-frequency region. This paper presents a new FRF-based substructure analysis that uses the FRFs from the rigid body information not from the complex finite element model of the substructure with rigid body motion. The rigid body information including the mass, the moment of inertia and the coordinates of the mass centre comes from the computer-aided design data. Since the mechanism of this technique is very similar to the finite element formation, it can be applied to complex systems with ease. Through a simple example of a ladder structure and a practical example of the interior noise in a car, the accuracy and efficiency of this approach is proven.


2017 ◽  
Vol 09 (08) ◽  
pp. 1750109 ◽  
Author(s):  
Huaiping Ding ◽  
Zheng H. Zhu ◽  
Xiaochun Yin ◽  
Lin Zhang ◽  
Gangqiang Li ◽  
...  

This paper developed a new Hamiltonian nodal position finite element method (FEM) to treat the nonlinear dynamics of cable system in which the large rigid-body motion is coupled with small elastic cable elongation. The FEM is derived from the Hamiltonian theory using canonical coordinates. The resulting Hamiltonian finite element model of cable contains low frequency mode of rigid-body motion and high frequency mode of axial elastic deformation, which is prone to numerical instability due to error accumulation over a very long period. A second-order explicit Symplectic integration scheme is used naturally to enforce the conservation of energy and momentum of the Hamiltonian finite element system. Numerical analyses are conducted and compared with theoretical and experimental results as well as the commercial software LS-DYNA. The comparisons demonstrate that the new Hamiltonian nodal position FEM is numerically efficient, stable and robust for simulation of long-period motion of cable systems.


Author(s):  
Ahmed A. Shabana ◽  
Hussien A. Hussien ◽  
José L. Escalona

Abstract There are three basic finite element formulations, which are used in multibody dynamics. These are the floating frame reference approach, the incremental method and the large rotation vector approach. In the floating frame of reference and incremental formulations, the slopes are assumed small in order to define infinitesimal rotations that can be treated and transformed as vectors. This description, however, limits the use of some important elements such as beams and plates in a wide range of large displacement applications. As demonstrated in some recent publications, if infinitesimal rotations are used as nodal coordinates, the use of the finite element incremental formulation in the large reference displacement analysis does not lead to exact modeling of the rigid body inertia when the structures rotate as rigid bodies. In this paper, a new and simple finite element procedure that employs the mathematical definition of the slope and uses it to define the element coordinates instead of the infinitesimal and finite rotations is developed for large rotation and deformation problems. By using this description and by defining the element coordinates in the global system, not only the need for performing coordinate transformation is avoided, but also a simple expression for the inertia forces is obtained. Furthermore, the resulting mass matrix is constant and it is the same matrix that appears in linear structural dynamics. It is demonstrated in this paper, that this coordinate description leads to exact modeling of the rigid body inertia when the structure rotate as rigid bodies. Nonetheless, the stiffness matrix becomes nonlinear function of time even in the case of small displacements. The method presented in this paper differs from previous large rotation vector formulations in the sense that the inertia forces, the kinetic energy, and the strain energy are not expressed in terms of any orientation coordinates, and therefore, the method does not require interpolation of finite rotations. While the use of the formulation is demonstrated using a simple planar beam element, the generalization of the method to other element types and to the three dimensional case is straightforward. Using the finite element procedure presented in this paper, beams and plates can be treated as isoparametric elements.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882311
Author(s):  
Jing Li

The dual quaternion is the simplest and most effective mathematical tool to describe the translational and rotational motion of a general rigid body. Its computation and updating require screw vector. The relative pose information need to be updated when measuring the pose of the rigid body. In the traditional algorithm, it generally focuses on attitude updating, but less research on position updating. The rotation vector algorithm is used to represent the quaternion to update the attitude of the rigid body, but it cannot update the position. Because any general rigid body motion can be realized by rotation about a certain axis and translation along this axis, this article proposes an algorithm to update the position and attitude of the rigid body’s relative motion based on the screw vector. The rotation vector and screw vector are introduced in the rigid body motion and update the quaternion and dual quaternion, respectively; then, the relative pose information of the leader–follower rigid body based on the screw vector algorithm is deduced. The single-sample, two-sample, and three-sample algorithms are compared and simulated, and the simulation results show that this method not only overcomes the deficiencies associated with the separate updating of position and attitude using a traditional algorithm but also has higher precision than the traditional algorithm.


1999 ◽  
Vol 122 (4) ◽  
pp. 498-507 ◽  
Author(s):  
Marcello Campanelli ◽  
Marcello Berzeri ◽  
Ahmed A. Shabana

Many flexible multibody applications are characterized by high inertia forces and motion discontinuities. Because of these characteristics, problems can be encountered when large displacement finite element formulations are used in the simulation of flexible multibody systems. In this investigation, the performance of two different large displacement finite element formulations in the analysis of flexible multibody systems is investigated. These are the incremental corotational procedure proposed in an earlier article (Rankin, C. C., and Brogan, F. A., 1986, ASME J. Pressure Vessel Technol., 108, pp. 165–174) and the non-incremental absolute nodal coordinate formulation recently proposed (Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge). It is demonstrated in this investigation that the limitation resulting from the use of the infinitesmal nodal rotations in the incremental corotational procedure can lead to simulation problems even when simple flexible multibody applications are considered. The absolute nodal coordinate formulation, on the other hand, does not employ infinitesimal or finite rotation coordinates and leads to a constant mass matrix. Despite the fact that the absolute nodal coordinate formulation leads to a non-linear expression for the elastic forces, the results presented in this study, surprisingly, demonstrate that such a formulation is efficient in static problems as compared to the incremental corotational procedure. The excellent performance of the absolute nodal coordinate formulation in static and dynamic problems can be attributed to the fact that such a formulation does not employ rotations and leads to exact representation of the rigid body motion of the finite element. [S1050-0472(00)00604-8]


Author(s):  
Guangbo Hao ◽  
Xianwen Kong ◽  
Xiuyun He

A planar reconfigurable linear (also rectilinear) rigid-body motion linkage (RLRBML) with two operation modes, that is, linear rigid-body motion mode and lockup mode, is presented using only R (revolute) joints. The RLRBML does not require disassembly and external intervention to implement multi-task requirements. It is created via combining a Robert’s linkage and a double parallelogram linkage (with equal lengths of rocker links) arranged in parallel, which can convert a limited circular motion to a linear rigid-body motion without any reference guide way. This linear rigid-body motion is achieved since the double parallelogram linkage can guarantee the translation of the motion stage, and Robert’s linkage ensures the approximate straight line motion of its pivot joint connecting to the double parallelogram linkage. This novel RLRBML is under the linear rigid-body motion mode if the four rocker links in the double parallelogram linkage are not parallel. The motion stage is in the lockup mode if all of the four rocker links in the double parallelogram linkage are kept parallel in a tilted position (but the inner/outer two rocker links are still parallel). In the lockup mode, the motion stage of the RLRBML is prohibited from moving even under power off, but the double parallelogram linkage is still moveable for its own rotation application. It is noted that further RLRBMLs can be obtained from the above RLRBML by replacing Robert’s linkage with any other straight line motion linkage (such as Watt’s linkage). Additionally, a compact RLRBML and two single-mode linear rigid-body motion linkages are presented.


Sign in / Sign up

Export Citation Format

Share Document