Potential Energy as Design Criterion in Planar Multistable Mechanisms

2021 ◽  
Author(s):  
Edward J. Dold ◽  
Philip A. Voglewede

Abstract Toggle mechanisms are used throughout engineering to accomplish various tasks, for example residential electrical switching. The design of toggle mechanisms can be broken into three categories: determination of a topology, geometric parameterization, and optimization. While topological determination and optimization have well established processes for use in design, geometric parameterization which includes defining link lengths and spring stiffness has largely been left to engineering judgement. This paper presents a design methodology using potential energy graphs which informs the engineering decisions made in choosing mechanism parameters, giving designers higher confidence in the design. A kinematic analysis coupled with Lagrange’s equation determines the relationship between the mechanism parameters and the potential energy curve. Plotting the potential energy with respect to the generalized coordinate yields a graph with a slope that is the generalized force or moment. The relationships between parameters and their effects on the mechanism are difficult to observe in the equations of motion, but potential energy plots readily provide information pertinent to the design of toggle mechanisms and decouple their effects. The plots also allow design by position rather than time which makes the design process faster. The design process is applied to three examples: a simple toggle mechanism, a compliant mechanism, and a reconfigurable mechanism to show the nuances of the approach.

1977 ◽  
Vol 66 (3) ◽  
pp. 1135-1140 ◽  
Author(s):  
Luis R. Kahn ◽  
Thom H. Dunning ◽  
Nicholas W. Winter ◽  
William A. Goddard

Author(s):  
Gleb L. Kotkin ◽  
Valeriy G. Serbo

If the potential energy is independent of time, the energy of the system remains constant during the motion of a closed system. A system with one degree of freedom allows for the determination of the law of motion in quadrature. In this chapter, the authors consider motion of the particles in the one-dimensional fields. They discuss also how the law and the period of a particle moving in the potential field change due to adding to the given field a small correction.


1993 ◽  
Vol 58 (7) ◽  
pp. 1485-1490 ◽  
Author(s):  
Narayanan Rajamanickam ◽  
Natarajan Ponraj ◽  
Ponpandian Durai Ezhilarasan ◽  
Veluchamy Arumugachamy ◽  
Manuel Fernandez Gomez ◽  
...  

The potential energy curve for the electronic ground state of the SnCl molecule has been constructed by the Rydberg-Klein-Rees method in the modification by Vanderslice and collaborators. Empirical potential functions, of five parameters by Hulburt and Hirschfelder, of three parameters by Lippincott and collaborators, and that by Szoke and Baitz using the electronegativity are examined for their adequacy to represent the true curve. The five parameters by Hulburt-Hirschfelder function, U(r) = De[(1 - e-x)2 + c x3 e-2x (1 + bx)], was found to be the best fitting function and it was used for the determination of the dissociation energy. The estimated value attained for dissociation energy is 346 ± 8 kJ mol-1. For this value of dissociation energy, the estimated values for parameters and expansion coefficients are c = 0.06864, b = -0.363738, a0 = 2.759 . 103 m-1, a1 = 2.876 and a2 = 4.013, a0, a1 and a2, being the Dunham's coefficients.


2018 ◽  
Vol 99 (3) ◽  
pp. 211-223
Author(s):  
Hervé W. Ouedraogo ◽  
Genevieve Barro ◽  
Ousséni So ◽  
Benjamin Mampassi

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Vahid Moeini ◽  
Mehri Deilam

We derive an equation for calculation of molecular diameter of dense fluids, with using simultaneous Lennard-Jones (12-6) potential function and the internal pressure results. Considering the internal pressure by modeling the average configurational potential energy and then taking its derivative with respect to volume to a minimum point of potential energy has been shown that molecular diameter is function of the resultant of the forces of attraction and the forces of repulsion between the molecules in a fluid. The regularity is tested with experimental data for 10 fluids including Ar, N2, CO, CO2, CH4, C2H6, C3H8, C4H10, C6H6, and C6H5CH3. These problems have led us to try to establish a function for the accurate calculation of the molecular diameter based on the internal pressure theory for different fluids. The relationship appears to hold both compressed liquids and dense supercritical fluids.


Sign in / Sign up

Export Citation Format

Share Document