Body-Segment Orientation Estimation in Rider-Bicycle Interactions With an Un-Calibrated Monocular Camera and Wearable Gyroscopes

Author(s):  
Xiang Lu ◽  
Yizhai Zhang ◽  
Kaiyan Yu ◽  
Jingang Yi ◽  
Jingtai Liu

We present a real-time human body-segment (e.g., upper limbs) orientation estimation scheme in rider-bicycle interactions. The estimation scheme is built on the fusion of measurements of an un-calibrated monocular camera on the bicycle and a set of small wearable gyroscopes attached to rider’s upper limbs. The known optical features are conveniently collocated with the gyroscopes. The design of an extended Kalman filter (EKF) to fuse the vision/inertial measurements compensates for the drifting errors by directly integrating gyroscope measurements. The characteristic and constraints from human anatomy and the rider-bicycle interactions are used to enhance the EKF performance. We demonstrate the effectiveness of the estimation design through bicycle riding experiments. The attractive properties of the proposed pose estimation in human-machine interactions include low-cost, high-accuracy, and wearable configurations for outdoor personal activities. Although we only present the application for rider-bicycle interactions, the proposed estimation scheme is readily extended and used for other types of human-machine interactions.

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Xiang Lu ◽  
Kaiyan Yu ◽  
Yizhai Zhang ◽  
Jingang Yi ◽  
Jingtai Liu ◽  
...  

Pose estimation of human–machine interactions such as bicycling plays an important role to understand and study human motor skills. In this paper, we report the development of a human whole-body pose estimation scheme with application to rider–bicycle interactions. The pose estimation scheme is built on the fusion of measurements of a monocular camera on the bicycle and a set of small wearable gyroscopes attached to the rider's upper- and lower-limbs and the trunk. A single feature point is collocated with each wearable gyroscope and also on the body segment link where the gyroscope is not attached. An extended Kalman filter (EKF) is designed to fuse the visual-inertial measurements to obtain the drift-free whole-body poses. The pose estimation design also incorporates a set of constraints from human anatomy and the physical rider–bicycle interactions. The performance of the estimation design is validated through ten subject riding experiments. The results illustrate that the maximum errors for all joint angle estimations by the proposed scheme are within 3 degs. The pose estimation scheme can be further extended and used in other types of physical human–machine interactions.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 54254-54268 ◽  
Author(s):  
Lu Bai ◽  
Matthew G. Pepper ◽  
Yong Yan ◽  
Malcolm Phillips ◽  
Mohamed Sakel

2020 ◽  
Author(s):  
Derek Schulte ◽  
Kyam Krieger ◽  
Carl W. Chin ◽  
Alexander Sonn
Keyword(s):  
Low Cost ◽  

Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


2013 ◽  
Author(s):  
Erica Nocerino ◽  
Fabio Menna ◽  
Salvatore Troisi
Keyword(s):  
Low Cost ◽  

Sign in / Sign up

Export Citation Format

Share Document