Combined Optimal Design and Control of a Near Isothermal Liquid Piston Air Compressor/Expander for a Compressed Air Energy Storage (CAES) System for Wind Turbines

Author(s):  
Mohsen Saadat ◽  
Perry Y. Li

The key component of Compressed Air Energy Storage (CAES) system is an air compressor/expander. The roundtrip efficiency of this energy storage technology depends greatly on the efficiency of the air compressor/expander. There is a trade off between the thermal efficiency and power density of this component. Different ideas and approaches were introduced and studied in the previous works to improve this trade off by enhancing the heat transfer between air and its environment. In the present work, a combination of optimal compression/expansion rate, optimal chamber shape and optimal heat exchanger material distribution in the chamber is considered to maximize the power density of a compression/expansion chamber for a given desired efficiency. Results show that the power density can be improved by more than 20 folds if the optimal combination of flow rate, shape and porosity are used together.

Author(s):  
Mohsen Saadat ◽  
Farzad A. Shirazi ◽  
Perry Y. Li

Maintaining the accumulator pressure regardless of its energy level and tracking the power demanded by the electrical grid are two potential advantages of the Compressed Air Energy Storage (CAES) system proposed in [1, 2]. In order to achieve these goals, a nonlinear controller is designed motivated by an energy-based Lyapunov function. The control inputs of the storage system include displacement of the pump/motor in the hydraulic transformer and displacement of the liquid piston air compressor/expander. While the latter has a relatively low bandwidth, the former is a faster actuator with a higher bandwidth. In addition, the pneumatic path of the storage vessel that is connected to the liquid piston air compressor/expander has a high energy density, whereas the hydraulic path of the storage vessel is power dense. The nonlinear controller is then modified to achieve a better performance for the entire system according to these properties. In the proposed approach, the control effort is distributed between the two pump/motors based on their bandwidths: the hydraulic transformer reacts to high frequency events, while the liquid piston air compressor/expander performs a steady storage/regeneration task. As a result, the liquid piston air compressor/expander will loosely maintain the accumulator pressure ratio and the pump/motor in the hydraulic transformer will precisely track the desired generator power. This control scheme also allows the accumulator to function as a damper in the storage system by absorbing power disturbances from the hydraulic path generated by wind gusts.


Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119525
Author(s):  
Jiayu Bai ◽  
Feng Liu ◽  
Xiaodai Xue ◽  
Wei Wei ◽  
Laijun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document