Reactive Pellets for Improved Solar Hydrogen Production Based on Sodium Manganese Ferrite Thermochemical Cycle

Author(s):  
Carlo Alvani ◽  
Mariangela Bellusci ◽  
Aurelio La Barbera ◽  
Franco Padella ◽  
Marzia Pentimalli ◽  
...  

Hydrogen production by water-splitting thermochemical cycle based on manganese ferrite /sodium carbonate reactive system is reported. Two different preparation procedures for manganese ferrite/sodium carbonate mixture were adopted and compared in terms of materials capability to cyclical hydrogen production. According to the first procedure conventionally synthesized manganese ferrite, i. e. high temperature (1250 °C) heating in Ar of carbonate/oxide precursors, was mixed with sodium carbonate. The blend was tested inside a TPD reactor using a cyclical hydrogen production/material regeneration scheme. After few cycles the mixture resulted rapidly passivated and unable to further produce hydrogen. An innovative method that avoids the high temperature synthesis of manganese ferrite is presented. This procedure consists in a set of consecutive thermal treatments of a manganese carbonate/sodium carbonate/iron oxide mixture in different environments (inert, oxidative, reducing) at temperatures not exceeding 750 °C. Such material, whose observed chemical composition consists in manganese ferrite and sodium carbonate in stoichiometric amount, is able to evolve hydrogen during 25 consecutive water-splitting cycles, with a small decrease in cyclical production efficiency.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Carlo Alvani ◽  
Mariangela Bellusci ◽  
Aurelio La Barbera ◽  
Franco Padella ◽  
Marzia Pentimalli ◽  
...  

Hydrogen production by water-splitting thermochemical cycle based on manganese ferrite/sodium carbonate reactive system is reported. Two different preparation procedures for manganese ferrite/sodium carbonate mixture were adopted and compared in terms of material capability to cyclical hydrogen production. According to the first procedure, conventionally synthesized manganese ferrite, i.e., high temperature (1250°C) heating in Ar of carbonate/oxide precursors, was mixed with sodium carbonate. The blend was tested inside a temperature programed desorption reactor using a cyclical hydrogen production/material regeneration scheme. After a few cycles, the mixture resulted rapidly passivated and unable to further produce hydrogen. An innovative method that avoids the high temperature synthesis of manganese ferrite is presented. This procedure consists in a set of consecutive thermal treatments of a manganese carbonate/sodium carbonate/iron oxide mixture in different environments (inert, oxidative, and reducing) at temperatures not exceeding 750°C. Such material, whose observed chemical composition consists of manganese ferrite and sodium carbonate in stoichiometric amounts, is able to evolve hydrogen during 25 consecutive water-splitting cycles, with a small decrease in cyclical production efficiency.


2014 ◽  
Vol 39 (36) ◽  
pp. 20920-20929 ◽  
Author(s):  
Francesca Varsano ◽  
Maria Anna Murmura ◽  
Bruno Brunetti ◽  
Franco Padella ◽  
Aurelio La Barbera ◽  
...  

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
C. Alvani ◽  
M. Bellusci ◽  
A. La Barbera ◽  
F. Padella ◽  
L. Seralessandri ◽  
...  

The mixed sodium manganese ferrite thermochemical cycle for sustainable hydrogen production is reviewed. Both the hydrogen production step and the reaction that leads to the regeneration of initial reactants are described as multistep reactions. The chemical cyclability of the reactive system has been demonstrated at 750°C.


2019 ◽  
Vol 3 (2) ◽  
pp. 50 ◽  
Author(s):  
Giampaolo Caputo ◽  
Irena Balog ◽  
Alberto Giaconia ◽  
Salvatore Sau ◽  
Alfonso Pozio

The efficiency of HI concentration/separation from a HIx solution, (mixture of HI/H2O/I2) represents a crucial factor in the sulfur-iodine thermochemical water splitting process for hydrogen production. In this paper, an experimental study on HI cathodic concentration in HIx solution using stacked electro-electrodialysis (EED) cells was carried out under the conditions of 1 atm and at three different temperature (25, 55 and 85 °C) and using a current density of 0.10 A/cm2. Results showed that an increase in HI concentration can be obtained under certain conditions. The apparent transport number (t+) in all the experiments was very close to 1, and the electro-osmosis coefficient (β) changed in a range of 1.08–1.16. The tests showed a detectable, though slow, increase in both the anodic iodine and cathodic hydriodic acid concentrations.


2020 ◽  
Vol 267 ◽  
pp. 114860 ◽  
Author(s):  
Yanpeng Mao ◽  
Yibo Gao ◽  
Wei Dong ◽  
Han Wu ◽  
Zhanlong Song ◽  
...  

ChemInform ◽  
2013 ◽  
Vol 44 (11) ◽  
pp. no-no
Author(s):  
F. Varsano ◽  
F. Padella ◽  
C. Alvani ◽  
M. Bellusci ◽  
A. La Barbera

Author(s):  
Yohann Dumont ◽  
Patrick Aujollet ◽  
Jean-Henry Ferrasse

The hydrogen world consumption should increase significantly to progressively replace hydrocarbons. Due to its high power density, nuclear reactor should take an important place in this production. This paper focuses on the hydrogen production by thermochemical cycle using the heat available at 900°C of a new generation nuclear reactor. The chosen thermochemical cycle for this study is the iodine-sulphur thermochemical cycle water splitting.The process flowsheet under consideration has high total energy consumption. It has also many local energy needs unevenly distributed over a wide temperature range. The raw distribution of this energy gives a hydrogen production efficiency of 14.0%. To improve this, the proposed coupling is built using an energy distribution network with a coolant to meet the safety requirements. In this simple case, the efficiency of hydrogen production comes to 21.9%. By integrating a heat pump into the energy distribution network, the efficiency of production increases to 42.0%. The exergetic efficiency, increases from 59.3% to 85.8%.


Sign in / Sign up

Export Citation Format

Share Document