Experimental and Numerical Analyses of Mixed Mode Crack Initiation Angle

Author(s):  
Jafar Al Bin Mousa ◽  
Nesar Merah ◽  
Abdel-Salam Eleiche ◽  
Abul-Fazal Arif

This paper presents a study for predicting crack initiation angle in the case of mixed mode fracture i.e., opening and sliding mode. Experimental and numerical analyses were carried out using photoelasticity and ANSYS finite element program, respectively. Polycarbonate specimens with a thickness of 3mm and different angles of inclinations namely 0° and 22.5° were considered in this analysis. Predicting the crack initiation angles is dependent on the value of stress in the vicinity of the crack tip. As a result, stress intensity factor is considered as the most significant parameter in this regard because it represents the stress level at the crack tip. In experimental analysis Schroedl and Smith method is used to calculate the pure opening mode stress intensity factor (KI) and Smith and Smith method for the mixed mode case (KI & KII). Then, SIF’s for straight and inclined crack are determined numerically using ANSYS. After that, the values of stress intensities are incorporated in minimum strain energy density criterion (S-Criterion) to find the crack’s angle of initiation.

2020 ◽  
Vol 22 (4) ◽  
pp. 931-938
Author(s):  
O. Zebri ◽  
H. El Minor ◽  
A. Bendarma

AbstractIn fracture mechanics most interest is focused on stress intensity factors, which describe the singular stress field ahead of a crack tip and govern fracture of a specimen when a critical stress intensity factor is reached. In this paper, stress intensity factors which represents fracture toughness of material, caused by a notch in a volumetric approach has been examined, taking into account the specific conditions of loading by examining various U-notched circular ring specimens, with various geometries and boundary conditions, under a mixed mode I+II. The bend specimens are computed by finite element method (FEM) and the local stress distribution was calculated by the Abaqus/CAE. The results are assessed to determine the evolution of the stress intensity factor of different notches and loading distances from the root of notch. This study shows that the tenacity is not intrinsic to the material for all different geometries notches.


CORROSION ◽  
10.5006/3711 ◽  
2021 ◽  
Author(s):  
Hamid Niazi ◽  
Greg Nelson ◽  
Lyndon Lamborn ◽  
Reg Eadie ◽  
Weixing Chen ◽  
...  

Pipelines undergo sequential stages before failure caused by High pH Stress Corrosion Cracking (HpHSCC). These sequential stages are incubation stage, intergranular crack initiation (Stage 1a), crack evolution to provide the condition for mechanically driven crack growth (Stage 1b), sustainable mechanically driven crack propagation (Stage 2), and rapid crack propagation to failure (Stage 3). The crack propagation mechanisms in Stage 1b are composed of the nucleation and growth of secondary cracks on the free surface and crack coalescence of secondary cracks with one another and the primary crack. These mechanisms continue until the stress intensity factor (<i>K</i>) at the crack tip reaches a critical value, known as <i>K</i><sub>ISCC</sub>. This investigation took a novel approach to study Stage 1b in using pre-cracked Compact Tension (CT) specimens. Using pre-cracked specimens and maintaining <i>K</i> at less than <i>K</i><sub>ISCC</sub> provided an opportunity to study crack initiation on the surface of the specimen under plane stress conditions in the presence of a pre-existing crack. In the present work, the effects of cyclic loading characteristics on crack growth behavior during Stage 1b were studied. It was observed that the pre-existing cracks during Stage 1b led to the initiation of secondary cracks. The initiation of the secondary cracks at the crack tip depended on loading characteristics, <i>i.e</i>., the amplitude and frequency of load fluctuations. The secondary cracks at the crack tip can be classified into four categories based on their positions with respect to the primary crack. A high density of intergranular cracks formed in the cyclic plastic zone generated by low R-ratio cycles. The higher the frequency of the low <i>R</i>-ratio cycles, the higher the density of the intergranular cracks forming in the cyclic plastic zone. The crack growth rate increased with an increase in either the amplitude or the frequency of the load fluctuations. The minimum and maximum crack growth rates were 8×10<sup>-9</sup> mm/s and 4.2×10<sup>-7</sup> mm/s, respectively, with <i>R</i>-ratio varying between 0.2 and 0.9, frequency varying between 10<sup>-4</sup> Hz and 5×10<sup>-2</sup> Hz, and at a fixed stress intensity factor of 15 MPa.m<sup>0.5</sup>. It was found that avoiding rapid and large load fluctuations slowed down crack geometry evolution and delayed onset of Stage 2. The implication of these results for pipeline operators is that reducing internal pressure fluctuations by reducing the frequency and/or amplitude of the fluctuations can expand Stage 1 and increase the reliable lifetime of operating pipelines.


Author(s):  
Kenji Machida

The experiment was conducted on the compact normal and shear (CNS) specimens made of homogeneous and dissimilar materials subjected to mixed-mode loading. Many Young’s fringes patterns around the crack tip were taken and analyzed by the image-processing system developed in my laboratory. The displacement obtained by speckle photography is not as smooth as that obtained by the finite element analysis (FEA). Therefore, the displacement data were smoothed by 2 D FFT filtering and least squares method. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis. Consequently, the stress and strain near the crack tip can be evaluated with high accuracy by the present stress-analyzing system. Then, the stress-intensity factor was evaluated by the virtual crack extension method (VCEM) and displacement extrapolation. The accuracy of stress-intensity factor at the free surface was discussed from both viewpoint of experiment and 3 D FEA.


2019 ◽  
Vol 485 (2) ◽  
pp. 162-165
Author(s):  
V. A. Babeshko ◽  
O. M. Babeshko ◽  
O. V. Evdokimova

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith–Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Bing Yang ◽  
Zhanjiang Wei ◽  
Zhen Liao ◽  
Shuwei Zhou ◽  
Shoune Xiao ◽  
...  

AbstractIn the digital image correlation research of fatigue crack growth rate, the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor, thereby affecting the life prediction. This paper proposes a Gauss-Newton iteration method for solving the crack tip position. The conventional linear fitting method provides an iterative initial solution for this method, and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix. A noise-added artificial displacement field is used to verify the feasibility of the method, which shows that all parameters can be solved with satisfactory results. The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result, and the relative error between the two is only − 0.621%; The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip, and the maximum relative error with the test plastic zone area is − 11.29%. The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%. The crack tip coordinates, stress intensity factors, and plastic zone contour changes in the loading and unloading phases are explored. The results show that the crack tip change during the loading process is faster than the change during the unloading process; the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process; under the same load, the theoretical plastic zone during the unloading process is higher than that during the loading process.


Sign in / Sign up

Export Citation Format

Share Document