Evolution of Tenacity in Mixed Mode Fracture – Volumetric Approach

2020 ◽  
Vol 22 (4) ◽  
pp. 931-938
Author(s):  
O. Zebri ◽  
H. El Minor ◽  
A. Bendarma

AbstractIn fracture mechanics most interest is focused on stress intensity factors, which describe the singular stress field ahead of a crack tip and govern fracture of a specimen when a critical stress intensity factor is reached. In this paper, stress intensity factors which represents fracture toughness of material, caused by a notch in a volumetric approach has been examined, taking into account the specific conditions of loading by examining various U-notched circular ring specimens, with various geometries and boundary conditions, under a mixed mode I+II. The bend specimens are computed by finite element method (FEM) and the local stress distribution was calculated by the Abaqus/CAE. The results are assessed to determine the evolution of the stress intensity factor of different notches and loading distances from the root of notch. This study shows that the tenacity is not intrinsic to the material for all different geometries notches.

2016 ◽  
Vol 823 ◽  
pp. 23-29
Author(s):  
Claudiu Ovidiu Popa ◽  
Simion Haragâş

The values of the stress intensity factor (SIF) KI are almost always negative in the substrate of the gear teeth, due to the compressive stresses field. The more negative values are higher, respectively, the positive values are lower, the crack faces are more compressed, so the probability of crack propagation after the mode I is lower. Thus, the analysis of the factors leading to the minimum KI values may reveal the conditions that favor the fatigue crack propagation by opening mode. Instead, SIF KII is determinant in the growth rate of the fatigue crack by mode II, in terms of compressive stresses field. Thus, the more KII is higher, the propagation speed is higher, so an analysis of the factors that lead to its maximum value is very useful. The equivalent stress intensity factor Keq corresponds to a mixed-mode of loading and take into account the simultaneous influence of both stress intensity factors KI and KII. The variation of this factor can be used as a parameter of the modified Paris law, in order to study the propagation of the fatigue cracks in the case of mixed-mode loading of contact area between teeth flanks. SIFs variations were analyzed according to the state of stresses, position on the pitch line between the gear teeth flanks, position and angle of an initial crack in the gear tooth substrate, residual tensions etc.


2010 ◽  
Vol 452-453 ◽  
pp. 249-252
Author(s):  
Yu Zhang ◽  
Naoaki Noda ◽  
Xin Lan ◽  
Kentarou Takaisi

Adhesive joints are widely used as the joints with the same or different adherents, such as in engineering and electric devices. However, because of mismatch of different materials properties, failures due to crack initiation and propagation are often observed on the interface between adhesive and adherents. Therefore, it is important to analyze stress intensity factor of crack on the interface. In this paper, the effect of material combination of adhesive and adherents on stress intensity factor and effect of the thickness of adhesive on stress intensity factor are discussed. A useful method to calculate the stress intensity factor of interface crack is presented with focusing on the stresses at the crack tip calculated by finite element method. The stress intensity factors are indicated in charts under different thickness of adhesive . It is found that the intensity of singular stress first increases with increasing , then decreases from about , and keeps constant from about , when is the width of adhesive. These results are helpful to design dimensions of devices and choose appropriate materials when adhesives are used inside of them.


Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


Author(s):  
Mayumi Ochi ◽  
Kiminobu Hojo ◽  
Itaru Muroya ◽  
Kazuo Ogawa

Alloy 600 weld joints have potential for primary water stress corrosion cracks (PWSCC). At the present time it has been understood that PWSCC generates and propagates in the Alloy 600 base metal and the Alloy 600 weld metal and there has been no observation of cracking the stainless and the low alloy steel. For the life time evaluation of the pipes or components the crack extension analysis is required. To perform the axial crack extension analysis the stress intensity database or estimation equation corresponding to the extension crack shape is needed. From the PWSCC extension nature mentioned above, stress intensity factors of the conventional handbooks are not suitable because most of them assume a semi-elliptical crack and the maximum aspect ratio crack depth/crack half length is one (The evaluation in this paper had been performed before API 579-1/ASME FFS was published). Normally, with the advance of crack extension in the thickness direction at the weld joint, the crack aspect ratio exceeds one and the K-value of the conventional handbook can not be applied. Even if those equations are applied, the result would be overestimated. In this paper, considering characteristics of PWSCC’s extension behavior in the welding material, the axial crack was modeled in the FE model as a rectangular shape and the stress intensity factors at the deepest point were calculated with change of crack depth. From the database of the stress intensity factors, the simplified equation of stress intensity factor with parameter of radius/thickness and thickness/weld width was proposed.


Author(s):  
Daniel M. Blanks

An API 579-1/ASME FFS-1 Failure Assessment Diagram based Fitness-for-Service assessment was carried out on an embedded crack-like flaw found in a nozzle to shell weld in a pressure vessel. Stress intensity factors were initially calculated by utilizing stress results from a Finite Element Analysis (FEA) of an uncracked configuration, with the standard embedded crack stress intensity factor solution given in API 579-1/ASME FFS-1. Due to the complex nozzle geometry and flaw size, a second analysis was carried out, incorporating a crack into the FEA model, to calculate the stress intensity factors and evaluate if the standard solution could be applied to this geometry. A large difference in the resulting stress intensity factors was observed, with those calculated by the FEA with the crack incorporated into the model to be twice as high as those calculated by the standard solutions, indicating the standard embedded crack stress intensity factor solution may be non-conservative in this case. An investigation was carried out involving a number of studies to determine the cause of the difference. Beginning with an elliptical shaped embedded crack in a plate, the stress intensity factor calculated with an idealized 3D crack mesh agreed with the API 579-1/ASME FFS-1 solution. Examining other crack locations, and crack shapes, such as a constant depth embedded crack, revealed how the solution began to differ. The greatest difference was found when considering a crack mesh with a small component height (i.e. the distance measured perpendicular from the crack face to the top of the mesh). A close agreement was then found between the stress intensity factors calculated in the nozzle model and an idealized crack mesh with component heights representative of the true geometry. This revealed that reduced structural stiffness is a key factor in the calculation of the stress intensity factors for this geometry, due to the close proximity of the embedded crack to the inner surface of the nozzle. It was found that this reduction is potentially significant even with relatively small crack sizes. This paper details the investigation, and aims to provide the reader with an awareness of situations when the standard stress intensity factor solutions may no longer be valid, and offers general recommendations to consider when calculating stress intensity factors in these situations.


2002 ◽  
Vol 124 (4) ◽  
pp. 446-456 ◽  
Author(s):  
Chih-Yi Chang ◽  
Chien-Ching Ma

An efficient analytical alternating method is developed in this paper to evaluate the mixed-mode stress intensity factors of embedded multiple cracks in a semi-infinite plane. Analytical solutions of a semi-infinite plane subjected to a point force applied on the boundary, and a finite crack in an infinite plane subjected to a pair of point forces applied on the crack faces are referred to as fundamental solutions. The Gauss integrations based on these point load fundamental solutions can precisely simulate the conditions of arbitrarily distributed loads. By using these fundamental solutions in conjunction with the analytical alternating technique, the mixed-mode stress intensity factors of embedded multiple cracks in a semi-infinite plane are evaluated. The numerical results of some reduced problems are compared with available results in the literature and excellent agreements are obtained.


2016 ◽  
Vol 18 ◽  
pp. 52-57
Author(s):  
Lahouari Fodil ◽  
Abdallah El Azzizi ◽  
Mohammed Hadj Meliani

A failure criterion is proposed for ductile fracture in U-notched components under mixed mode static loading. The Compact Tension Shear (CTS) is the preferred test specimen used to determine stress intensity factor in the mode I, mode II and the mixed-mode fracture. In this work, the mode I and mode II stress intensity factors were computed for different notch ratio lengths 0.1<a/W<0.7, of the inner radius of notch 0.25mm<ρ<4mm and load orientation angles 0°<α< 90° using finite element analysis. However, a review of numerical analysis results reveals that the conventional fracture criteria with only stress intensity factors (NSIFs) Kρ first term of Williams’s solution provide different description of stress field around notch zone comparing with results introduce the second and third parameter T-stress and A3.


2009 ◽  
Vol 631-632 ◽  
pp. 109-114
Author(s):  
Sadik Kosker ◽  
Serkan Dag ◽  
Boray Yildirim

This study presents a three dimensional finite element method for mixed-mode fracture analysis of an FGM coating-bond coat-substrate structure. The FGM coating is assumed to contain an inclined semi-elliptical crack at the free surface. The trilayer structure is examined under the effect of transient thermal stresses. Strain singularity around the crack front is simulated by utilizing collapsed wedge-shaped singular elements. The modes I, II and III stress intensity factors are computed by applying the displacement correlation technique and presented as a function of time. Four different FGM coating types are examined in the parametric analyses which are metal-rich, ceramic-rich, linear variation and homogeneous coatings. The results provided illustrate the influences of the FGM coating type and crack inclination angle on the transient behavior of the mixed-mode stress intensity factors.


Sign in / Sign up

Export Citation Format

Share Document