A Study on the Development of a Practical Postprocessor for 5-Axis Machining

Author(s):  
J. D. Hwang ◽  
H. C. Jung ◽  
K. B. Park ◽  
Y. G. Jung

This paper deals with the development of a practical postprocessor for 5-axis machine tools. Recently, special 5-axis machine tools with non-orthogonal rotary axes as well as typical 5-axis machine tools with orthogonal rotary axes have been introduced. In the present work, the general equations of NC data for 5-axis configurations with non-orthogonal rotary axes are exactly expressed by the inverse kinematics, and a Windows-based postprocessor written in Visual Basic was developed according to the proposed algorithm. The developed postprocessor is a general system suitable for all kinds of 5-axis machine tools not only with orthogonal rotary axes but also with non-orthogonal rotary axes, thereby expanding the range of application of the developed postprocessor. In addition, through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment, the effectiveness of the proposed algorithm was confirmed. Compatibility was improved by allowing exchange of data formats such as RTCP controlled NC data, Vector post NC data, and POF CL data, and convenience was increased by adding the function of work-piece origin offset. Consequently, a practical post-processor for 5-axis machining has been developed.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Song Gao ◽  
Jihong Chen ◽  
Shusheng Liu ◽  
Xiukun Yuan ◽  
Pengcheng Hu ◽  
...  

Abstract Due to their superior machining quality, efficiency, and availability, five-axis machine tools are important for the manufacturing of complicated parts of freeform surfaces. In this study, a new type of the five-axis machine tool was designed that is composed of four rotary axes as well as one translational axis. Given the structure of the proposed machine tool, an inverse kinematics analysis was conducted analytically, and a set of methods was then proposed to address the issues in the kinematic analysis, e.g., the singularity and multi-solution problems. Compared with traditional five-axis machine tools, which are typically composed of three linear axes and two rotary axes, the proposed machine tool exhibited better kinematic performance with machining parts with hub features, such as impellers, which was validated by simulations and real cuttings.


2012 ◽  
Vol 622-623 ◽  
pp. 525-530
Author(s):  
Tran Duc Tang

This paper presents a postprocessor for five-axis milling machine that capable of converting CL (cutter location) data to machine control data (NC program). The proposed postprocessor method is based on inverse kinematics transformation and postprocessor module is programmed in Visual Basic language. The Deckel Maho DMU 50 eVoluion five-axis machine with two rotary axes (B and C) on the table is modeled and verified in software VERICUT® to validate the NC data generated by proposed postprocessor.


2011 ◽  
Vol 201-203 ◽  
pp. 133-137
Author(s):  
Chen Hua She ◽  
Kai Sheng Li ◽  
Zhi Hao Zheng

Five-axis machining, an important processes in precision manufacturing, has been used in defense, aerospace and consumer product industries. Many combinations can be synthesized to generate various five-axis machine tool configurations, in which the linear and rotary axes are normally orthogonal. Since five-axis NC data can only be applied to a specific configuration, the portability of the NC data is inevitably limited. A special purpose five-axis machine with a nonorthogonal linear axis configuration is investigated in this research. The complete analytical equations for NC data are obtained using the homogeneous coordinate transformation matrix and inverse kinematics. A window-based postprocessor system written by Borland C++ Builder was developed according to the proposed algorithm. A roller gear cam was adopted as an example to generate the NC code using the proposed postprocessor system. A trail-cut experiment conducted with this special purpose machine tool confirms the effectiveness of the proposed methodology.


2018 ◽  
Author(s):  
Guoqiang Fu ◽  
Hongli Gao ◽  
Tengda Gu

The postprocessor is essential for machining with five-axis machine tools. This paper develops one universal postprocessor for table-tilting type of five-axis machine tools without rotational tool center point (RTCP) function. Firstly, positions of two rotary axes and the workpiece in the machine coordinate system (MCS) are introduced into the kinematic chain of the five-axis machine tools. The uniform product of exponential (POE) formula of the tool relative to the workpiece is established to obtain the universal forward kinematics. On this basis, the postprocessor of table-tilting type of five-axis machine tools is developed. The calculation of rotation angles of rotation axes is proposed in details, including the calculation of double solutions, the determination of rotation angles of C-axis and the selection principle of the shortest path of rotation angles. Movements of linear axes are calculated with rotation angles of rotary axes. The generated movements of all axes are actual positions of all axes relative to their zero positions, which can be used for machining directly. The postprocessor does not rely on RTCP function with positions of rotary axes and the workpiece in MCS. Finally, cutting test in VERICUT and real cutting experiments on SmartCNC500_DRTD five-axis machine tool are carried out to verify the effectiveness of the proposed postprocessor.


Author(s):  
Qin Hu ◽  
Youping Chen ◽  
Jixiang Yang ◽  
Dailin Zhang

Linear motion commands of multi-axis computer numerical control (CNC) machine tools need to be smoothed at the transition corners, because the velocity discontinuities at corners can result in fluctuations on machine tool motions and lead to poor surface quality. However, no research has been reported on local corner smoothing algorithm for four-axis CNC machine tools with two rotary axes by considering their special kinematic characteristics. To this end, this paper proposes an analytical C3 continuous local corner smoothing algorithm for four-axis CNC machines with two rotary axes. After coordinates transformation, the tool tip positions and tool orientations are smoothed by locally inserting specially designed three-dimensional (3D) quintic B-splines and one-dimensional (1D) quintic B-splines into the corners between linear motion segments, respectively. The smoothing algorithm guarantees C3 continuity of the tool tip position and C3 continuous synchronization of the tool orientation related to the tool tip position, through analytically evaluating control points of the inserted microsplines. The maximum error tolerances of the tool tip position and tool orientation are mathematically constrained. Experiments on an in-house developed four-axis machine verify the efficacy of the proposed algorithm, where maximal errors caused by the local corner smoothing algorithm are constrained, the synchronization of the tool orientation and the tool tip position are achieved, and the proposed C3 continuous corner smoothing algorithm has lower jerk and jounce but higher tracking and contour accuracy than C2 continuous algorithm.


2002 ◽  
Vol 2002.4 (0) ◽  
pp. 177-178
Author(s):  
Zi Ye LI ◽  
Akihiro KAWASHIMA ◽  
Yoshiaki KAKINO ◽  
Iwao Yamaji ◽  
Yukitoshi IHARA ◽  
...  

Mechatronics ◽  
2011 ◽  
pp. 213-217 ◽  
Author(s):  
M. Holub ◽  
J. Pavlík ◽  
M. Opl ◽  
P. Blecha

Sign in / Sign up

Export Citation Format

Share Document