A Knowledge Capitalization Methodology Based on Automatic Knowledge Extraction From 3D CAD Models

Author(s):  
Mathieu Lebouteiller ◽  
Jérémy Boxberger ◽  
Samuel Gomes ◽  
Nadhir Lebaal ◽  
Daniel Schlegel

The issue of improving quality, costs and delays indicators in design and manufacturing is more relevant than ever in the industry. After lean manufacturing, well known in production process, the lean engineering approach is being implemented today in the field of design, taking the name of lean product development. The management of knowledge and know-how (existing, new or to be acquired) is the heart of lean engineering. In our suggested methodology this is implemented through a new generation of tools called Knowledge Configuration Management (KCM) and Knowledge Extraction Assistant (KEA). KCM tools are lean engineering components that provide analytical approach to knowledge management and knowledge-based engineering. These tools require a highly integrated approach that involves, for example, predefined geometrical parametric 3D models, such as CAD templates. But this approach cannot be deployed in all engineering sites. We propose to complete this KCM approach introducing a semantic network approach, coupling with Feature Identity Card (FIC). FIC contains a set of metadata and information existing in the Product Data Management (PDM), connected with information extracted from 3D CAD (Computer Aided Design) models. It allows contextualizing information and ensures semantic connections, in order to manipulate the right parameters with mathematical algorithms. Those algorithms will search candidate relationships between design parameters extracted from CAD models. Our suggested approach aims at extracting knowledge in cases where design never came out of Knowledge Based Engineering (KBE) applications. In those situations, it seems important to complete classical knowledge management approach, and to find out the implicit knowledge embedded in 3D CAD models. This is achieved through a global approach, focusing on the product’s 3D definitions. We suggest introducing the latter approach by a suite of digital KEA tools (interfaced with KCM tools). Extracting knowledge from projects information stored in the Product Data Management does this. More precisely, the methodology is based on a commercial 3D similarity search tools for CAD models and on mathematical algorithms that search relationships between extracted design parameters. The goal is to submit new rules to the process and design experts. Implementing this methodology, a deeper knowledge of the product and its associated process can be acquired. This ensures a more productive and efficient design process.

2021 ◽  
Vol 11 (22) ◽  
pp. 10775
Author(s):  
Elmedin Mešić ◽  
Nedim Pervan ◽  
Adis J. Muminović ◽  
Adil Muminović ◽  
Mirsad Čolić

The development process of the knowledge-based engineering (KBE) system for the structural size optimization of external fixation device is presented in this paper. The system is based on algorithms for generative modeling, finite element model (FEM) analysis, and size optimization. All these algorithms are integrated into the CAD/CAM/CAE system CATIA. The initial CAD/FEM model of external fixation device is verified using experimental verification on the real design. Experimental testing is done for axial pressure. Axial stress and displacements are measured using tensometric analysis equipment. The proximal bone segment displacements were monitored by a displacement transducer, while the loading was controlled by a force transducer. Iterative hybrid optimization algorithm is developed by integration of global algorithm, based on the simulated annealing (SA) method and a local algorithm based on the conjugate gradient (CG) method. The cost function of size optimization is the minimization of the design volume. Constrains are given in a form of clinical interfragmentary displacement constrains, at the point of fracture and maximum allowed stresses for the material of the external fixation device. Optimization variables are chosen as design parameters of the external fixation device. The optimized model of external fixation device has smaller mass, better stress distribution, and smaller interfragmentary displacement, in correlation with the initial model.


2012 ◽  
Vol 466-467 ◽  
pp. 1135-1139 ◽  
Author(s):  
Jia Li ◽  
Yun Bing Yang ◽  
Fa Yuan Wei

Under the tendency of knowledge economy in the world, knowledge research becomes a hot subject. The analysis about the meanings, categories and characteristics of knowledge is presented at first. The concept and key techniques of Knowledge Based Engineering (KBE) are discussed. The differences and relationships among KBE, Expert System (ES) and CAD/CAE/CAPP/CAM (CAX) Systems are analyzed as well. An example on knowledge-based designing of one complicated product is provided. A product knowledge base is established by analyzing the structure and characteristics of product design knowledge. Product knowledge integration and management is fulfilled using Product Data Management (PDM) and dynamic database technique.


2022 ◽  
Vol 334 ◽  
pp. 05001
Author(s):  
Corallo Angelo ◽  
Dibiccari Carla ◽  
Lazoi Mariangela ◽  
Starace Giuseppe ◽  
Laforgia Domenico

Hydrogen gas turbines and burners need high attention and their appropriate realization, yet during their design, can lead important benefits for the whole sector. Realizing the best design, the first time, reduces reworks and requests of design changes from the manufacturing departments. In this field, Knowledge Based Engineering is a good strategy for embedding, in an automatic way, experts’ knowledge into CAD models during the design of a component. It enables a reduction of human errors and costs in several design tasks and improving the final quality of a component model. With these premises, the aim to the study is to lead improvements and appropriate actions in the design and re-configuration of hydrogen power generation systems (i.e. gas turbines and burners) by means of KBE, leading improvements yet in this early phase of the global race for hydrogen. A systematic literature review is carried out to explore the current state of art for the application of KBE for the design of turbines and burners in different industrial sectors. Evidences from the practice are collected in a structured classification and elaborated and summarized for application in the design of gas turbines and burners for the hydrogen production.


2021 ◽  
pp. 198-205
Author(s):  
Bian Xiuwu Maochun

Manufacturing firms have been compelled to invest heavily in digitizing and optimizing their technical and manufacturing operations as a result of mass customization. When developing and introducing new goods, not only must manufacturing procedures be computerized, but also information of how the products must be developed and manufactured based on client needs must be applied. One major academic issue is to assist the industry in ensuring that stakeholders understand the background information of automated engineering all through the production process. The goal of the study described in this article is to provide a foundation for a connectivity perspective of Knowledge-Based Engineering (KBE). The use of graph theory in conjunction with content-based filtering methods is used to handle network creation and contextualization, which are fundamental ideas in connectivism. To enable a connectivity management culture, the article demonstrates how engineering information in spreadsheet, knowledge representation, and Computer Aided Design (CAD) models may be infiltrated and displayed as filtering graphs.


2016 ◽  
Vol 3 (3) ◽  
pp. 274-285 ◽  
Author(s):  
Leila Zehtaban ◽  
Omar Elazhary ◽  
Dieter Roller

Abstract A designer is mainly supported by two essential factors in design decisions. These two factors are intelligence and experience aiding the designer by predicting the interconnection between the required design parameters. Through classification of product data and similarity recognition between new and existing designs, it is partially possible to replace the required experience for an inexperienced designer. Given this context, the current paper addresses a framework for recognition and flexible retrieval of similar models in product design. The idea is to establish an infrastructure for transferring design as well as the required PLM (Product Lifecycle Management) know-how to the design phase of product development in order to reduce the design time. Furthermore, such a method can be applied as a brainstorming method for a new and creative product development as well. The proposed framework has been tested and benchmarked while showing promising results. Highlights Developing a knowledge-based framework to assist the designer in design decisions. Opitz feature recognition and code generation from STEP for data standardization. An efficient similarity recognition algorithm to retrieve models from database.


Author(s):  
P. Sainter ◽  
K. Oldham ◽  
A. Larkin ◽  
A. Murton ◽  
R. Brimble

Abstract Knowledge-based engineering systems are now becoming more commonplace in engineering industry. There is a need to ensure the technology is used correctly and to provide the user with all the possible benefits that the system can offer. This paper looks at how product knowledge can be managed within knowledge-based engineering systems to ensure that the knowledge retains its value and usefulness during the product lifecycle. Presently, the use of these systems has been for the short-term benefit of the company. However, it is believed that it is important to consider longer-term issues also, since knowledge normally has a half-life of around 20 years. The main aim of this paper is to demonstrate the need for product knowledge management within knowledge-based engineering systems by looking at key issues that are related to the longer-term use of these systems. This paper will also provide a product knowledge management scheme for the development and management of product knowledge within knowledge-based engineering systems, thereby extending the benefits of knowledge-based engineering systems into the longer-term.


Sign in / Sign up

Export Citation Format

Share Document