Self-Sustained Oscillations With Tonal Sound Around a Backward-Facing Step With a Small Upstream Step

Author(s):  
H. Yokoyama ◽  
Y. Tsukamoto ◽  
C. Kato ◽  
A. Iida

Self-sustained oscillations with acoustic feedback take place in a flow over a two-dimensional two-step configuration: a small forward-backward facing step, which we hereafter call “a bump”, and a relatively large backward-facing step (backstep). These oscillations can radiate intense tonal sound and fatigue nearby components of industrial products. We clarify the mechanism of these oscillations by directly solving the compressible Navier-Stokes equations. The results show that vortices are shed from the leading edge of the bump and acoustic waves are radiated when these vortices pass the trailing edge of the backstep. The propagated acoustic waves shed new vortices by stretching the vortex formed by the flow separation at the leading edge of the bump, and a feedback loop is formed. Moreover, we propose a formula for predicting the frequencies of the tonal sound based on the detailed investigation of the phase relationship between the vortices and the acoustic waves. Also, we investigate the flow conditions for these oscillations by changing the bump configurations. The results show that the oscillations strongly occur when the bump is sufficiently high and the trailing edge of the bump is sufficiently distant from the backstep.

2001 ◽  
Vol 444 ◽  
pp. 383-407 ◽  
Author(s):  
ERCAN ERTURK ◽  
THOMAS C. CORKE

The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies was investigated using a spatial solution of the Navier–Stokes equations in vorticity/streamfunction form in parabolic coordinates. The free stream is composed of a uniform flow with a superposed periodic velocity fluctuation of small amplitude. The method follows that of Haddad & Corke (1998) in which the solution for the basic flow and linearized perturbation flow are solved separately. We primarily investigated the effect of frequency and angle of incidence (−180° [les ] α2 [les ] 180°) of the acoustic waves on the leading-edge receptivity. The results at α2 = 0° were found to be in quantitative agreement with those of Haddad & Corke (1998), and substantiated the Strouhal number scaling based on the nose radius. The results with sound waves at angles of incidence agreed qualitatively with the analysis of Hammerton & Kerschen (1996). These included a maximum receptivity at α2 = 90°, and an asymmetric variation in the receptivity with sound incidence angle, with minima at angles which were slightly less than α2 = 0° and α2 = 180°.


1990 ◽  
Vol 112 (4) ◽  
pp. 501-509 ◽  
Author(s):  
N.-S. Liu ◽  
F. Davoudzadeh ◽  
W. R. Briley ◽  
S. J. Shamroth

Transonic strong blade-vortex interaction is numerically analyzed by solving the unsteady 2-D Navier–Stokes equations using an iterative implicit second order scheme. The dominant processes during the interaction are the development of large transverse pressure gradients in the upper leading edge region and the development of disturbances at the root of the lower surface shock wave. As a result of this interaction, high pressure pulses are emitted from the leading edge, and acoustic waves are radiated from the lower surface in a region originally occupied by a supersonic pocket. In addition, severe load variations occur when the vortex is within one chord length of the blade.


Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


Author(s):  
T. Tanuma ◽  
N. Shibukawa ◽  
S. Yamamoto

An implicit time-marching higher-order accurate finite-difference method for solving the two-dimensional compressible Navier-Stokes equations was applied to the numerical analyses of steady and unsteady, subsonic and transonic viscous flows through gas turbine cascades with trailing edge coolant ejection. Annular cascade tests were carried out to verify the accuracy of the present analysis. The unsteady aerodynamic mechanisms associated with the interaction between the trailing edge vortices and shock waves and the effect of coolant ejection were evaluated with the present analysis.


It is shown that the boundary layer approximation to the flow of a viscous fluid past a flat plate of length l , generally valid near the plate when the Reynolds number Re is large, fails within a distance O( lRe -3/4 ) of the trailing edge. The appropriate governing equations in this neighbourhood are the full Navier- Stokes equations. On the basis of Imai (1966) these equations are linearized with respect to a uniform shear and are then completely solved by means of a Wiener-Hopf integral equation. The solution so obtained joins smoothly on to that of the boundary layer for a flat plate upstream of the trailing edge and for a wake downstream of the trailing edge. The contribution to the drag coefficient is found to be O ( Re -3/4 ) and the multiplicative constant is explicitly worked out for the linearized equations.


2011 ◽  
Vol 383-390 ◽  
pp. 4221-4226
Author(s):  
Song Ling Wang ◽  
Zhe Liu ◽  
Lei Zhang

It’s of great significance for safe and reliable operation of fan to research on the stall characteristics of the airfoil. The 2D non-compressible Reynolds-Averaged Navier-Stokes equations was built to simulate the flow around the airfoil of G4-73No.8D centrifugal fan, a detailed numerical simulation under different angles has been carried out which based on the Realizable turbulence model with Fluent. The numerical results show that the smaller of the flow rate, the bigger incidence angle is, when the incidence angle is bigger than the critical incidence angle, the suction side stall appears. According simulation the airfoil stall appears when the incidence angle is -28°, with the increasing of the negative incidence angle, the separation point gradually moves to the leading edge. There is a strong vortex which locates at suction side =0.5,the alternating stress on the blade which caused by vortex will make the blade fatigue. If the incidence angle is less than -20°,there is no flow separation, therefore, to ensure the safe operation of the fan, the incidence angle should be less than -20°.


1967 ◽  
Vol 27 (4) ◽  
pp. 691-704 ◽  
Author(s):  
R. T. Davis

Laminar incompressible flow past a semi-infinite flat plate is examined by using the method of series truncation (or local similarity) on the full Navier-Stokes equations. The first and second truncations are calculated at points on the plate away from the leading edge, while only the first truncation is calculated at the leading edge. The solutions are compared with the results from other approximate methods.


According to Stewartson (1969, 1974) and to Messiter (1970), the flow near the trailing edge of a flat plate has a limit structure for Reynolds number Re →∞ consisting of three layers over a distance O (Re -3/8 ) from the trailing edge: the inner layer of thickness O ( Re -5/8 ) in which the usual boundary layer equations apply; an intermediate layer of thickness O ( Re -1/2 ) in which simplified inviscid equations hold, and the outer layer of thickness O ( Re -3/8 ) in which the full inviscid equations hold. These asymptotic equations have been solved numerically by means of a Cauchy-integral algorithm for the outer layer and a modified Crank-Nicholson boundary layer program for the displacement-thickness interaction between the layers. Results of the computation compare well with experimental data of Janour and with numerical solutions of the Navier-Stokes equations by Dennis & Chang (1969) and Dennis & Dunwoody (1966).


1994 ◽  
Vol 260 ◽  
pp. 271-298 ◽  
Author(s):  
Tim Colonius ◽  
Sanjiva K. Lele ◽  
Parviz Moin

The scattering of plane sound waves by a vortex is investigated by solving the compressible Navier–-Stokes equations numerically, and analytically with asymptotic expansions. Numerical errors associated with discretization and boundary conditions are made small by using high-order-accurate spatial differentiation and time marching schemes along with accurate non-reflecting boundary conditions. The accuracy of computations of flow fields with acoustic waves of amplitude five orders of magnitude smaller than the hydrodynamic fluctuations is directly verified. The properties of the scattered field are examined in detail. The results reveal inadequacies in previous vortex scattering theories when the circulation of the vortex is non-zero and refraction by the slowly decaying vortex flow field is important. Approximate analytical solutions that account for the refraction effect are developed and found to be in good agreement with the computations and experiments.


Sign in / Sign up

Export Citation Format

Share Document