turbine efficiency
Recently Published Documents


TOTAL DOCUMENTS

481
(FIVE YEARS 114)

H-INDEX

23
(FIVE YEARS 6)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
He Zhenpeng ◽  
Zhou Jiaxing ◽  
Xin Jia ◽  
Yang Chengquan ◽  
Li Baichun

Abstract The present work reports the influence of the 1.5-stage turbine flow field by the front and aft rim seal flow. The interaction between the front and aft purge flow and the mainstream of a 1.5-stage turbine was numerically simulated, and the influence of the front and aft purge flow on the downstream vane was analyzed separately. The results show that the front purge flow is distributed at the higher radius of second vane inlet, which changes the position of the blade hub secondary flows, and the aft purge flow is distributed at the low radius. The purge flow at different locations in the aft cavity exit forms shear induced vortex, pressure and suction side legs of the egress, which converges with the suction and pressure side legs of the horse vortex to form vane hub passage vortex. The increased purge flow rate in both the front and aft cavities significantly increases the sealing effectiveness of the rim seal, but also causes a reduction in turbine efficiency. The combined effect of the front and aft purge flow reduces the turbine efficiency of the end-wall structure by 0.3619, 0.9062, 1.5004, 2.0188 and 2.509% at IR = 0, IR = 0.5%, IR = 0.9%, IR = 1.3% and IR = 1.7%.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 309
Author(s):  
Jung-Bo Sim ◽  
Se-Jin Yook ◽  
Young Won Kim

The organic Rankine cycle (ORC) is a thermodynamic cycle in which electrical power is generated using an organic refrigerant as a working fluid at low temperatures with low-grade enthalpy. We propose a turbine embedded in a generator (TEG), wherein the turbine rotor is embedded inside the generator rotor, thus simplifying turbine generator structure using only one bearing. The absence of tip clearance between the turbine rotor blade and casing wall in the TEG eliminates tip clearance loss, enhancing turbine efficiency. A single-stage axial-flow turbine was designed using mean-line analysis based on physical properties, and we conducted a parametric study of turbine performance, and predicted turbine efficiency and power using the tip clearance loss coefficient. When the tip clearance loss coefficient was applied, turbine isentropic efficiency and power were 0.89 and 20.42 kW, respectively, and ORC thermal efficiency was 4.81%. Conversely, the isentropic efficiency and power of the turbine without the tip clearance loss coefficient were 0.94 and 22.03 kW, respectively, and the thermal efficiency of the ORC was 5.08%. Therefore, applying the proposed TEG to the ORC system simplifies the turbine generator, while improving ORC thermal efficiency. A 3D turbine generator assembly with proposed TEG structure was also proposed.


2021 ◽  
Vol 12 (1) ◽  
pp. 25
Author(s):  
Waseem Amjad ◽  
Mubeen Shahid ◽  
Anjum Munir ◽  
Furqan Asghar ◽  
Owais Manzoor

Energy management on the demand side is an important practice through which to address the challenge of energy shortage. In Pakistan, power plants have no specific energy management practice and a detail energy audit is normally observed as a one-time estimation that does not give significant information. In this study, an energy audit of a combined-cycle gas turbine power station was conducted and empirical data were compared with those obtained through a model developed in ASPEN, a simulation software that forecasts process performance. Next, an optimization tool was used to modify the ASPEN results and a comparison was drawn to estimate the amount of energy saved. It was found that compressor power consumption can be decreased up to 14.68% by increasing the temperature of compressed air from 320.2 °C to 423.79 °C for gas turbines. The output of gas turbines can be enhanced up to 13.5% and 21.4% with modelled and optimized data, respectively, using a multistage air compressor and multistage expansion. The calculated efficiency of the steam turbine was found to be 30.4%, which is 27.61% less than that of its designed efficiency. Steam turbine efficiency can be increased by 5% using a variable-speed water pump, leading to an estimated energy-saving potential of 8–9%. The combustion efficiency of gas turbines is not only important for higher turbine power output but also for better steam generation through heat-recovery steam generators in case of combined-cycle operations. The overall steam turbine efficiency is estimated to have increased by 19.27%, leading to a 12.68% improvement in combined efficiency.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhenggui Li ◽  
Chuang Cheng ◽  
Shengnan Yan ◽  
Shengyang Peng ◽  
Biao Ma

To study the influence of the blade entropy production range on the efficiency of a tubular turbine under coassociated conditions, the renormalization group K–ε turbulence model was used to simulate the full flow passage of the tubular turbine based on the Navier–Stokes equation, and the blade interface was analyzed using the eddy analysis method and entropy production theory. The results reveal that there is a strong correlation between the size of the high-entropy production area and the level of association. If the level of association is high, the size of the high-entropy production is small, and the turbine efficiency is high. Furthermore, if the level of association is low, the size of the high-entropy production area is large, and the turbine efficiency is low. Under small opening and small flow conditions, the blade entropy generation is due to the sharp change in the velocity gradient caused by the vortex on the blade. Under large opening and large flow conditions, the blade entropy production is mainly due to the friction loss caused by the impact of high-speed water flow.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012074
Author(s):  
Sufi Halim ◽  
Md Tasyrif Abdul Rahman ◽  
Anas Abdul Rahman ◽  
Muhammad Adi Hilmi Adnan ◽  
Muhammad Hafizi Azuzin ◽  
...  

Abstract The boundary layer turbine known as Tesla Turbine invented long ago but has failed to be commercialized and replaced by bladed turbines. In this paper, two new techniques for improving the turbine have been proposed. A test model of the proposed boundary layer turbine has been fabricated made and tested under different conditions. The design process includes producing a virtual design and simulation of the turbine using computer software. The proposed designs were fabricated and then tested to analyse results such as speed produced, power produced, and the turbine efficiency. From this study, the proposed turbine designs manage to achieve 18% and 69% efficiency. The findings of this study will serve as a reference for future studies in the generation of power through an alternative powered driven turbine.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012031
Author(s):  
Ahmed H S Yassin ◽  
Sameh M Shabaan ◽  
Amany Khaled

Abstract The design of a conventional horizontal axis wind turbine (HAWT) is based on the aerodynamic characteristics of a two-dimensional (2D) airfoil. The rotational motion and the consequent aerodynamic effects, of HAWT’s rotor, do not guarantee an optimal design point that matches the 2D airfoil characteristics. The present work studies the diversion of the flow due to the spanwise velocity component in a rotating reference frame. It suggests that a slight deviation in the flow away from the chordwise direction could alternate the characteristics of the airfoil profile. A bended profile with a circular arc was extracted from a baseline rotating blade, flattened, and modelled against the 2D S826 airfoil. The results show a substantial discrepancy in the airfoil characteristics which could influence the turbine efficiency. Therefore, it suggests using a pre-bended airfoil (3D) while modeling the blade, so the circular section will match the correct airfoil coordinates. The proposed bended-profile version was modeled against the baseline blade. This novel blade shows an augmentation in the power coefficient up to 5.4% starting from the design point to high tip speed ratios (TSR) and low wind speeds.


2021 ◽  
pp. 1-13
Author(s):  
Faisal Shaikh ◽  
Budimir Rosic

Abstract Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the midpassage gap. The midpassage gap reduces turbine efficiency and causes additional heat load into the vane platform, as well as changing the distribution of endwall heat transfer and film cooling. This paper presents a low-order analytical analysis to quantify the effects of the midpassage gap on aerodynamics and heat transfer, verified against an experimental campaign and CFD. Using this model, the effects of the gap can be quantified, for a generic turbine stage, based only on geometric features and the passage static pressure field. It is found that at present there are significant losses and a large proportion of heat load caused by the gap, but that with modified design this could be reduced to negligible levels. Cooling flows into the gap to prevent ingression are investigated analytically and with CFD. Recommendations are given for targets that turbine designers should work toward in reducing the adverse effects of the midpassage gap. A method to estimate the effect of gap flow is presented, so that for any machine the significance of the gap may be assessed.


2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


Sign in / Sign up

Export Citation Format

Share Document