Experimental Investigation of Single Roughness Element Effects on Supersonic Boundary Layer Transition

Author(s):  
Henny Bottini ◽  
Bayindir H. Saracoglu ◽  
Guillermo Paniagua

Predicting the characteristics of a transitional boundary layer remains an open challenge in supersonic flow fields. An experimental campaign to understand the effects of a single roughness element on a supersonic laminar boundary layer was designed. Two Mach numbers were tested, 1.6 and 2.3, including two roughness heights, 0.1 mm and 1 mm, over a flat plate. Steady and unsteady wall temperature and pressure levels were recorded to interpret the influence of the wake of the roughness. Heat flux and adiabatic wall temperature trends, temperature and pressure fluctuations RMS trends and time evolution of spectral content were reported. The initial wall temperature was varied during the wall temperature measurements and the resulting steady and unsteady effects on the roughness wake were investigated.

Author(s):  
Shicheng Liu ◽  
Meng Wang ◽  
Hao Dong ◽  
Tianyu Xia ◽  
Lin Chen ◽  
...  

Roughness element induced hypersonic boundary layer transition on a flat plate is investigated using infrared thermography at Ma = 5 and 6 flow condition. Surface Stanton number is acquired to analyze the effect of roughness element shape and height on the transition process. The correlation between the vortex structure induced by roughness element and the wall heat streaks is established. The results indicate that higher roughness element would induce stronger streamwise heat flux streaks, lead to transition advance in streamwise centerline and increase the width of spanwise wake. Moreover, for low roughness element, the effect of the shape is not obvious, and the height plays a leading role in the transition; for tall roughness element, the effect on accelerating transition for the diamond roughness element is the best, the square is the worst, and the shape plays a leading role in the transition.


1992 ◽  
Vol 114 (3) ◽  
pp. 322-332 ◽  
Author(s):  
M. F. Blair

Hot-wire anemometry was employed to examine the laminar-to-turbulent transition of low-speed, two-dimensional boundary layers for two (moderate) levels of flow acceleration and various levels of grid-generated freestream turbulence. Flows with an adiabatic wall and with uniform-flux heat transfer were explored. Conditional discrimination techniques were employed to examine the zones of flow within the transitional region. This analysis demonstrated that as much as one-half of the streamwise-component unsteadiness, and much of the apparent anisotropy, observed near the wall was produced, not by turbulence, but by the steps in velocity between the turbulent and inter-turbulent zones of flow. Within the turbulent zones u′/v′ ratios were about equal to those expected for equilibrium boundary-layer turbulence. Near transition onset, however, the turbulence kinetic energy within the turbulent zones exceeded fully turbulent boundary-layer levels. Turbulent-zone power-spectral-density measurements indicate that the ratio of dissipation to production increased through transition. This suggests that the generation of the full equilibrium turbulent boundary-layer energy cascade required some time (distance) and may explain the very high TKE levels near onset.


Sign in / Sign up

Export Citation Format

Share Document