Experimental Study of Separation Control Over a Wide Range of Reynolds Numbers Using Dielectric Barrier Discharge Plasma Actuator on Airfoil

Author(s):  
Satoshi Sekimoto ◽  
Kozo Fujii ◽  
Masayuki Anyoji ◽  
Yuma Miyakawa ◽  
Shinichiro Ito ◽  
...  

This study proposes separation control investigation using a Dielectric Barrier Discharge (DBD) plasma actuator on a NACA0015 airfoil over a wide range of Reynolds numbers. The airfoil was a two dimensional NACA0015 wing model with chord length of 200mm. Reynolds numbers based on the chord length were ranged from 252,000 to 1,008,000. A plasma actuator was installed at the leading edge and driven with AC voltage. Burst mode (duty cycle) actuations, in which nondimensional burst frequency F+ was ranged in 0.1–30, were applied. Time-averaged pressure measurements were conducted with angles of attack from 14deg to 22deg. The results show that initial flow fields without an actuation can be classified into three types; 1) leading edge separation, 2) trailing edge separation, and 3) hysteresis condition between 1) and 2), and the effect of burst actuation is different for each above initial condition.

Sign in / Sign up

Export Citation Format

Share Document