A Novel Approach to Designing Highly Efficient and Commercially Viable Biofuel Cells

Author(s):  
Nick L. Akers ◽  
Shelley D. Minteer

A biofuel cell is an electrochemical device in which the energy stored in a fuel, such as ethanol, is converted to electrical energy by the means of the catalytic activity of enzymes. Biofuel cells have traditionally suffered from low power densities and short lifetimes due to the fragility of the enzyme catalyst. Utilizing a novel quaternary ammonium salt treated Nafion membrane for enzyme immobilization in a biofuel cell results in increases in power densities and enzyme lifetimes to commercially viable levels. Additionally, this method provides sufficient protection to develop a membrane electrode assembly style (MEA) biofuel cell, an important step for commercialization. Previously, it has not been possible to create a MEA-style biofuel cell due to the denaturing of the enzyme that would occur at the high temperatures experienced during the heat pressing step of fabrication. Quaternary ammonium salt treated Nafion membranes provide sufficient protection for the enzyme to retain activity after exposure to temperatures of 140°C. Thus, a MEA-style biofuel cell can be created. Preliminary results yield biofuel cell MEAs with power densities ranging from 0.15 to 1.49 mW/cm2 and open circuit potentials of 0.360 to 0.599 V.

2020 ◽  
pp. 174751982095231
Author(s):  
Chunping Xiao ◽  
Lili Ji ◽  
Dehui Li ◽  
Louqun Wang ◽  
Jing Yang

Photoelectrochemical biofuel cells can convert light and chemical energy into electrical energy using a dye-sensitized titania (TiO2) fluorine-doped tin oxide photoanode and a platinum-coated fluorine-doped tin oxide cathode. TiO2 of the photoanode serves both as a support for dyes and as an electron-transporting medium, the structure of which can limit electron trapping and charge transporting and then affect the performance of the photoelectrochemical biofuel cells. TiO2 nanotube array films have been shown to enhance the efficiencies of both charge collection and electron injection, and hence a vertically aligned TiO2 nanotube array is investigated as a conductor for the tetrakis(4-carboxyphenyl)porphyrin dye to construct a new two-compartment photoelectrochemical biofuel cell. The photoelectrochemical biofuel cell containing the TiO2 nanotube array photoanode yields a short-circuit (Isc) current of 110 μA and an open-circuit (Voc) potential of 1010 mV. In contrast, the photovoltaic parameters, Isc and Voc of the photoelectrochemical biofuel cell with the mesoporous TiO2 nanocrystal fluorine-doped tin oxide photoanode, are 96.96 μA and 740 mV, respectively. Photovoltaic measurements show that the maximum incident photon-to-collected electron conversion efficiency was 58% at 430 nm through the spectral range (400–800 nm) for the photoelectrochemical biofuel cell with the TiO2 nanotube array fluorine-doped tin oxide photoanode. These results revealed that the TiO2 nanotube array had great potential for the photoelectrochemical biofuel cells.


2020 ◽  
Vol 22 (19) ◽  
pp. 6437-6443
Author(s):  
Cheng-Kou Liu ◽  
Meng-Yi Chen ◽  
Xin-Xin Lin ◽  
Zheng Fang ◽  
Kai Guo

A catalyst-, oxidant-, acidic solvent- and quaternary ammonium salt-free electrochemical para-selective hydroxylation of N-arylamides at rt in batch and continuous-flow was developed.


2013 ◽  
Vol 50 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Yong-Qiang Sun ◽  
Wen-Jing Li ◽  
Wan-Xu Wang ◽  
Qiu-Xiao Li ◽  
Wieslaw Hreczuch ◽  
...  

1997 ◽  
Vol 62 (6) ◽  
pp. 849-854 ◽  
Author(s):  
Vladislav Holba ◽  
Renata Košická

The paper deals with instability of solutions of quaternary ammonium permanganates, QMnO4 (Q = tetraethyl-, tetra-1-propyl-, tetra-1-butyl-, tetra-1-pentyl-, tetra-1-octyl-, and cetyltrimethylammonium), in dichloromethane and presents the rate constants and activation parameters of the reduction of permanganate. Attention was paid to the properties of colloidal Mn(IV) intermediate. The stability of the solutions depends markedly on the quaternary ammonium salt used.


Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119434
Author(s):  
Jun Chen ◽  
Hongliang Li ◽  
Chunfu Liu ◽  
Lingyun Liu ◽  
Yu Sun ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (44) ◽  
pp. 25667-25676 ◽  
Author(s):  
Jingyu Wang ◽  
Minghao Sui ◽  
Zhanfang Ma ◽  
Hongwei Li ◽  
Bojie Yuan

Polymer quaternary ammonium salt–capped silver nanoparticles (PQAS–AgNPs) were synthesized, and they exhibited significant antibacterial capacity against Bacillus subtilis.


2013 ◽  
Vol 34 (1) ◽  
pp. 106-110 ◽  
Author(s):  
Xiongjun Wu ◽  
Lin Zhao ◽  
Xiaojun Wang ◽  
Jinjie Wang ◽  
Yuli Zhang

2007 ◽  
Vol 98 (3) ◽  
pp. 209-218 ◽  
Author(s):  
N. Ladhari ◽  
M. H. V. Baouab ◽  
Abdelbasset Ben Dekhil ◽  
Amina Bakhrouf ◽  
P. Niquette

Sign in / Sign up

Export Citation Format

Share Document