Development of Methanol Reformer for the Portable PEFC Power System by ITRI

Author(s):  
C. H. Lee ◽  
C. H. Huang ◽  
C. T. Lin ◽  
Y. C. Liu ◽  
Hsin-Sen Chu

In order to apply the PEFC power generation system in near future, ITRI is cooperating with Taiwanese local electrical company to develop a compact methanol reformer. This methanol reformer can simultaneously catalyze autothermal and steam reforming reactions, depending on the application. Except the catalyst for methanol steam reforming and low temperature water gas shift reactions, ITRI has developed several catalysts for autothermal reforming, high temperature water-gas shift, and CO preferential oxidation reactions. We have integrated these catalysts to assemble a methanol reformer prototype. The characteristics of this methanol reformer operated at steady state are the maximum flow rate of hydrogen being 39 L/min (corresponding to 2.4 kWe), H2 concentration being 45∼65%, CO concentration less than 50 ppm, and the cold startup time less than 35 minutes. In addition, we have been developing a catalyst for methanation reaction. We hope to shorten the start-up time to less than 20 minutes and the volume of the reformer being reduced in half by integrating a good methanation catalyst into my next generation methanol reformer.

2007 ◽  
Vol 122 (1-2) ◽  
pp. 9-19 ◽  
Author(s):  
Harold N. Evin ◽  
Gary Jacobs ◽  
Javier Ruiz-Martinez ◽  
Uschi M. Graham ◽  
Alan Dozier ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Caleb Daniel Watson ◽  
Michela Martinelli ◽  
Donald Charles Cronauer ◽  
A. Jeremy Kropf ◽  
Gary Jacobs

Recent studies have shown that appropriate levels of alkali promotion can significantly improve the rate of low-temperature water gas shift (LT-WGS) on a range of catalysts. At sufficient loadings, the alkali metal can weaken the formate C–H bond and promote formate dehydrogenation, which is the proposed rate determining step in the formate associative mechanism. In a continuation of these studies, the effect of Rb promotion on Pt/ZrO2 is examined herein. Pt/ZrO2 catalysts were prepared with several different Rb loadings and characterized using temperature programmed reduction mass spectrometry (TPR-MS), temperature programmed desorption (TPD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), an X-ray absorption near edge spectroscopy (XANES) difference procedure, extended X-ray absorption fine structure spectroscopy (EXAFS) fitting, TPR-EXAFS/XANES, and reactor testing. At loadings of 2.79% Rb or higher, a significant shift was seen in the formate ν(CH) band. The results showed that a Rb loading of 4.65%, significantly improves the rate of formate decomposition in the presence of steam via weakening the formate C–H bond. However, excessive rubidium loading led to the increase in stability of a second intermediate, carbonate and inhibited hydrogen transfer reactions on Pt through surface blocking and accelerated agglomeration during catalyst activation. Optimal catalytic performance was achieved with loadings in the range of 0.55–0.93% Rb, where the catalyst maintained high activity and exhibited higher stability in comparison with the unpromoted catalyst.


Author(s):  
M.I. Ariëns ◽  
V. Chlan ◽  
P. Novák ◽  
L.G.A. van de Water ◽  
A.I. Dugulan ◽  
...  

2004 ◽  
Vol 267 (1-2) ◽  
pp. 27-33 ◽  
Author(s):  
Gary Jacobs ◽  
Adam Crawford ◽  
Leann Williams ◽  
Patricia M Patterson ◽  
Burtron H Davis

2004 ◽  
Vol 269 (1-2) ◽  
pp. 63-73 ◽  
Author(s):  
Gary Jacobs ◽  
Patricia M. Patterson ◽  
Uschi M. Graham ◽  
Dennis E. Sparks ◽  
Burtron H. Davis

Sign in / Sign up

Export Citation Format

Share Document