synthesis gas
Recently Published Documents





Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 515
David Berstad ◽  
Geir Skaugen ◽  
Simon Roussanaly ◽  
Rahul Anantharaman ◽  
Petter Nekså ◽  

Capture conditions for CO2 vary substantially between industrial point sources. Depending on CO2 fraction and pressure level, different capture technologies will be required for cost- and energy-efficient decarbonisation. For decarbonisation of shifted synthesis gas from coal gasification, several studies have identified low-temperature CO2 capture by condensation and phase separation as an energy- and cost-efficient option. In the present work, a process design is proposed for low-temperature CO2 capture from an Integrated Gasification Combined Cycle (IGCC) power plant. Steady-state simulations were carried out and the performance of the overall process, as well as major process components, were investigated. For the baseline capture unit layout, delivering high-pressure CO2 at 150 bar, the net specific power requirement was estimated to 273 kJe/kgCO2, and an 85% CO2 capture ratio was obtained. The impact of 12 different process parameters was studied in a sensitivity analysis, the results of which show that compressor and expander efficiencies, as well as synthesis gas separation temperature, have the highest impact on power requirements. Modifying the process to producing cold liquid CO2 for ship transport resulted in 16% increase in net power requirements and is well suited for capturing CO2 for ship transport.

2021 ◽  
Vol 12 (1) ◽  
pp. 98
Andrej Chríbik ◽  
Marián Polóni ◽  
Ľuboš Magdolen ◽  
Matej Minárik

The aim of the presented article is to analyse the influence of synthesis gas composition on the power, economic, and internal parameters of an atmospheric two-cylinder spark-ignition internal combustion engine (displacement of 686 cm3) designed for a micro-cogeneration unit. Synthesis gases produced mainly from waste contain combustible components as their basic material (methane, hydrogen, and carbon monoxide), as well as inert gases (carbon dioxide and nitrogen). A total of twelve synthesis gases were analysed that fall into the category of medium-energy gases with lower heating value in the range from 8 to 12 MJ/kg. All of the resulting parameters from the operation of the combustion engine powered by synthesis gases were compared with the reference fuel methane. The results show a decrease in the performance parameters for all operating loads and an increase in hourly fuel consumption. Specifically, for the operating speed of the micro-cogeneration unit (1500 L/min), the decrease in power parameters was in the range of 7.1–23.5%; however, the increase in hourly fuel consumption was higher by 270% to 420%. The decrease in effective efficiency ranged from 0.4 to 4.6%, which in percentage terms represented a decrease from 1.3% to 14.5%. The process of fuel combustion was most strongly influenced by the proportion of hydrogen and inert gases in the mixture. It can be concluded that setting up the synthesis gas production in the waste gasification process in order to achieve optimum performance and economic parameters of the combustion engine for a micro cogeneration unit has an influential role and is of crucial importance.

2021 ◽  
Vol 25 (12) ◽  
pp. 30-37
L.G. Pinaeva ◽  
A.S. Noskov

Existing (production of urea, dimethyl carbonate, polypropylene carbonate) and promising (production of methanol, synthesis gas, monomers dedicated to synthesis of polyurethanes and polycarbonate) chemical technologies which any, time soon, may become CO2 based economy for producing motor fuels and basic chemicals have been overviewed. Based on estimates of CO2 removals in these processes, it has been concluded that there is a potential for developing technologies to produce methanol from CO2 to a competitive cost of the target product. It is expected that interest in this process will decrease if stable carbon dioxide conversion catalysts for methane are introduced into the market.

2021 ◽  
Vol 3 ◽  
Yan Chen ◽  
Hyungwoong Ahn

In this paper, a feasibility study was carried out to evaluate cyclic adsorption processes for capturing CO2 from either shifted synthesis gas or H2 PSA tail gas of an industrial-scale SMR-based hydrogen plant. It is expected that hydrogen is to be widely used in place of natural gas in various industrial sectors where electrification would be rather challenging. A SMR-based hydrogen plant is currently dominant in the market, as it can produce hydrogen at scale in the most economical way. Its CO2 emission must be curtailed significantly by its integration with CCUS. Two Vacuum Pressure Swing Adsorption (VPSA) systems including a rinse step were designed to capture CO2 from an industrial-scale SMR-based hydrogen plant: one for the shifted synthesis gas and the other for the H2 PSA tail gas. Given the shapes of adsorption isotherms, zeolite 13X and activated carbon were selected for tail gas and syngas capture options, respectively. A simple Equilibrium Theory model developed for the limiting case of complete regeneration was taken to analyse the VPSA systems in this feasibility study. The process performances were compared to each other with respect to product recovery, bed productivity and power consumption. It was found that CO2 could be captured more cost-effectively from the syngas than the tail gas, unless the desorption pressure was too low. The energy consumption of the VPSA was comparable to those of the conventional MDEA processes.

2021 ◽  
Vol 2119 (1) ◽  
pp. 012113
S V Dimov

Abstract Systematic experimental data have been obtained on the results of catalytic chemical reactions in a microchannel reactor for the synthesis of methanol from synthesis gas. Synthesis gas contains hydrogen, carbon monoxide and dioxide, as well as nitrogen in the ratio 58/29/5/8. The experiments were carried out at different flow rates in the temperature range 190-260C. Experiments were also carried out for methanol synthesis in fixed bed reactor at different synthesis pressures.

Jimmy Jimmy ◽  
Achmad Roesyadi ◽  
Suprapto Suprapto ◽  
Firman Kurniawansyah

Fischer-Tropsch Synthesis (FTS) using Fe-Co/meso-HZSM-5 catalyst has been investigated. The impregnated iron and cobalt on HZSM-5 could be used as bifunction catalyst which combined polimerizing synthesis gas and long hydrocarbon cracking for making biofuel (saturated C5–C25 hydrocarbons as gasoline, kerosene and diesel oil). The study emphasized the effect of catalyst weight on product composition and process conversion. The HZSM-5, had been converted from ammonium ZSM-5 through calcination, and then desilicated with NaOH solution. The Co(NO3)2.6H2O and Fe(NO3)3.9H2O were used as precursor for incipient wetness impregnation (IWI) on amorphous meso-HZSM-5. The catalyst consisted of 10 % Fe and 90 % Co by weight, called 10Fe-90Co/meso-HZSM-5. All catalysts were reduced in situ in the continuous reactor with flowing hydrogen at 25 mL/min, 1 bar, 400 °C for 10 hours. The catalyst performance was observed in the same continuous fixed bed reactor at 25 mL/min synthesis gas (30 % CO, 60 % H2, 10 % N2), 250 °C, 20 bar for 96 hours. Various catalyst weight (1, 1.2, 1.4, 1.6 gram) were applied in FTS. The desilicated HZSM-5 properties (BET analysis) were 6.1–29.9 nm mesoporous diameter, 0.3496 cc/g average mesoporous volume, 526.035 cc/g pore surface area, and the EDX analysis gave 22.1059 Si/Al ratio and 16.11 % loading (by weight) on meso-HZSM-5. The reduced catalyst showed the XRD spectra of Fe (66°), Fe-Co alloy (44.50°) and Co3O4 (36.80°). The reaction using 1 gram of 10Fe-90Co/meso-HZSM-5 catalyst produced the largest composition and conversion. The 1 gram catalyst gave the largest normal selectivity of gasoline (19.15 %) and kerosene (55.18 %). While the largest normal diesel oil selectivity (24.17 %) was obtained from 1.4 gram of catalyst. The CO conversion per gram of catalyst showed similar value (CO conversion of 26–28 %) for all catalyst weight

2021 ◽  
pp. 133376
Iñaki Adánez-Rubio ◽  
Francisco García-Labiano ◽  
Alberto Abad ◽  
Luis F. de Diego ◽  
Juan Adánez

2021 ◽  
Vol 1 (1) ◽  
Hamza Shafiq ◽  
Shakir Ul Azam ◽  
Arshad Hussain

AbstractApproximately 50 million ton of municipal waste is generated in Pakistan per annum and most of this waste does not reach final deposit sites. In this research, Silvia gas technology for municipal solid waste (MSW) steam gasification is studied to produce high energy density product gas. A detailed simulation model is developed with the help of Aspen Plus®. Catalyst coal bottom ash along with lime (CaO) as sorbent is employed for tar reduction and improving the hydrogen (H2) yield in the product gas. The effect of gasification operating temperature and the ratio of steam to feedstock on synthetic gas composition, hydrogen (H2) yield and heating values of synthesis gas was studied. Coal bottom ash along with CaO had a substantial effect on hydrogen (H2) yield and synthesis gas production. Rise in steam–MSW ratio increased the hydrogen (H2) from 58 to 74.9% (vol.). The maximum value of hydrogen (H2) production, i.e., 74.9% by vol. was achieved at a steam–feedstock ratio of 1.9. A maximum of 79.8% by vol. hydrogen (H2) was attained at 680 °C gasification operating temperature with 1.3 ratio of steam to feedstock and coal bottom ash 0.07% by wt. High value of 13.1 MJ/Nm3 of hydrogen-rich synthetic gas was achieved at 680 °C. The acquired results lay the foundation for the economic feasibility study and pilot plant for MSW usage for hydrogen production.

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1321
Mohamed E. Osman ◽  
Vladimir V. Maximov ◽  
Viktor S. Dorokhov ◽  
Viktor M. Mukhin ◽  
Tatiana F. Sheshko ◽  

KCoMoS2 was supported on various carbon support materials to study the support effect on synthesis gas conversion. Next to two activated carbons with high micropore volume, a traditional alumina (γ-Al2O3) support and its carbon coated form (CCA) were studied for comparison. Coating alumina with carbon increases the selectivity to alcohols, but the AC-supported catalysts show even higher alcohol selectivities and yields, especially at higher temperatures where the conversions over the AC-supported catalysts increase more than those over the γ-Al2O3-based catalysts. Increasing acidity leads to decreased CO conversion yield of alcohols. The two activated-carbon-supported catalysts give the highest yield of ethanol at the highest conversion studied, which seems to be due to increased KCoMoS2 stacking and possibly to the presence of micropores and low amount of mesopores.

Sign in / Sign up

Export Citation Format

Share Document