Development of a Liquid-Fueled Dry Low Emissions Combustor for 300kW Class Recuperated Cycle Gas Turbine Engines

Author(s):  
Hiroshi Fujiwara ◽  
Masamichi Koyama ◽  
Shigeru Hayashi ◽  
Hideshi Yamada

The authors have developed a liquid-fueled, low-emissions, and single can combustor for the RGT3R, Niigata’s 300 kW class industrial gas turbine engine, with the goal of satisfying the most stringent environmental requirements for distributed power generation systems in Japan. This paper describes these development efforts, which included non-reacting Computational Fluid Dynamics (CFD) analysis and component and engine tests. The emissions target is less than 24 ppm nitrogen oxides (NOx), 60 ppm carbon monoxide (CO) and 60 ppm unburned hydrocarbons (UHCs) at dry 15% O2 correction for kerosene, while operating above 50% load. A lean premixed, pre-vaporized, axially staged combustion concept is used to minimize emissions levels to the strictest emissions regulations in urban areas such as Tokyo, Chiba, Saitama, Yokohama, and Osaka. This combustion system involves two pilot burners and two main mixture injection tubes that are extending into the combustion chamber to inject lean to ultra-lean premixed mixtures into the hot burned gas from pilot burners. Counter rotational swirl vanes are provided to pilot burners and main mixture injection tubes to prevent flashback into the premixing tubes. The RGT3R gas turbine engine operates smoothly with the developed DLE combustion system from idle to full load without combustion-driven pressure oscillations. A two-stage fuel control system employs liquid fuel supply for the pilot and main atomizers. As this paper describes, the emissions data from this engine meet the emissions goals.

Author(s):  
Mohamed A. Altaher ◽  
Hu Li ◽  
Simon Blakey ◽  
Winson Chung

This paper investigated the emissions of individual unburned hydrocarbons and carbonyl compounds from the exhaust gas of an APU (Auxiliary Power Unit) gas turbine engine burning various fuels. The engine was a single spool, two stages of turbines and one stage of centrifugal compressor gas turbine engine, and operated at idle and full power respectively. Four alternative aviation fuel blends with Jet A-1 were tested including GTL, hydrogenated renewable jet fuel and fatty acid ester. C2-C4 alkenes, benzene, toluene, xylene, trimethylbenzene, naphthalene, formaldehyde, acetaldehyde and acrolein emissions were measured. The results show at the full power condition, the concentrations for all hydrocarbons were very low (near or below the instrument detection limits). Formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions. Formaldehydes emissions were reduced for all fuels compared to Jet A-1 especially at the idle conditions. There were no differences in acetaldehydes and acrolein emissions for all fuels; however, there was a noticeable reduction with GTL fuel. The aromatic hydrocarbon emissions including benzene and toluene are decreased for the alternative and renewable fuels.


2010 ◽  
Author(s):  
Shahrokh Etemad ◽  
Benjamin Baird ◽  
Sandeep Alavandi ◽  
William Pfefferle

Author(s):  
Matthew E. Thomas ◽  
Mark J. Ostrander ◽  
Andy D. Leonard ◽  
Mel Noble ◽  
Colin Etheridge

CFD analysis methods were successfully implemented and verified with ongoing industrial gas turbine engine lean premix combustion system development. Selected aspects of diffusion and lean premix combustion modeling, predictions, observations and validated CFD results associated with the Solar Turbines Mars™ SoLoNOx combustor are presented. CO and NOx emission formation modeling details applicable to parametric CFD analysis in an industrial design environment are discussed. This effort culminated in identifying phenomena and methods of potentially further reducing NOx and CO emissions while improving engine operability in the Mars™ SoLoNOx combustion system. A potential explanation for the abrupt rise in CO formation observed in many gas turbine lean premix combustion systems is presented.


Author(s):  
Vladimir Lupandin ◽  
Martyn Hexter ◽  
Alexander Nikolayev

This paper describes a development program active at Magellan Aerospace Corporation since 2003, whereby specific modifications are incorporated into an Avco Lycoming T-53 helicopter gas turbine engine to enable it to function as a ground based Industrial unit for distributed power generation. The Lycoming T-53 is a very well proven and reliable two shaft gas turbine engine whose design can be traced back to the 1950s and the fact of its continued service to the present day is a tribute to the original design/development team. Phase 1 of the Program introduces abradable rotor path linings, blade coatings and changes to seal and blade tip clearances. Magellan has built a test cell to run the power generation units to full speed and full power in compliance with ISO 2314. In co-operation with Zorya-Mashproekt, Ukraine, the exhaust emissions of the existing combustion system for natural gas was reduced by 30%. New nozzles for low heat value fuels and for high hydrogen content fuels (up to 60% H2) have been developed. The T-53 gas turbine engine exhaust gas temperature is typically around 620 deg C, which makes it a very good candidate for co-generation and recuperated applications. As per Phase 2 of the program, the existing helicopter integral gearbox and separate industrial step-down gearbox will be replaced with single integral gearbox that will use the same lubrication oil system as the gas turbine engine. The engine power output will increase to 1200 kW at the generator terminals with an improvement to 25% efficiency ISO. Phase 3 of the Program will see the introduction of a new silo type combustion system, developed in order to utilize alternative fuels such as bio-diesel, biofuel (product of wood pyrolysis), land fill gases, syn gases etc. Phase 4 of the Program in cooperation with ORMA, Russia will introduce a recuperator into the package and is expected to realize a boost in overall efficiency to 37%. The results of testing the first two T-53 industrial gas turbine engines modified per Phase 1 will be presented.


Author(s):  
J. Zelina ◽  
D. T. Shouse ◽  
J. S. Stutrud ◽  
G. J. Sturgess ◽  
W. M. Roquemore

An aero gas turbine engine has been proposed that uses a near-constant-temperature (NCT) cycle and an Inter-Turbine Burner (ITB) to provide large amounts of power extraction from the low-pressure turbine. This level of energy is achieved with a modest temperature rise across the ITB. The additional energy can be used to power a large geared fan for an ultra-high bypass ratio transport aircraft, or to drive an alternator for large amounts of electrical power extraction. Conventional gas turbines engines cannot drive ultra-large diameter fans without causing excessively high turbine temperatures, and cannot meet high power extraction demands without a loss of engine thrust. Reducing the size of the combustion system is key to make use of a NCT gas turbine cycle. Ultra-compact combustor (UCC) concepts are being explored experimentally. These systems use high swirl in a circumferential cavity about the engine centerline to enhance reaction rates via high cavity g-loading on the order of 3000 g’s. Any increase in reaction rate can be exploited to reduce combustor volume. The UCC design integrates compressor and turbine features which will enable a shorter and potentially less complex gas turbine engine. This paper will present experimental data of the Ultra-Compact Combustor (UCC) performance in vitiated flow. Vitiation levels were varied from 12–20% oxygen levels to simulate exhaust from the high pressure turbine (HPT). Experimental results from the ITB at atmospheric pressure indicate that the combustion system operates at 97–99% combustion efficiency over a wide range of operating conditions burning JP-8 +100 fuel. Flame lengths were extremely short, at about 50% of those seen in conventional systems. A wide range of operation is possible with lean blowout fuel-air ratio limits at 25–50% below the value of current systems. These results are significant because the ITB only requires a small (300°F) temperature rise for optimal power extraction, leading to operation of the ITB at near-lean-blowout limits of conventional combustor designs. This data lays the foundation for the design space required for future engine designs.


Author(s):  
Partha S. Das

Engine rotors are one of the most critical components of a heavy duty industrial gas turbine engine, as it transfers mechanical energy from rotor blades to a generator for the production of electrical energy. In general, these are larger bolted rotors with complex geometries, which make analytical modeling of the rotor to determine its static, transient or dynamic behaviors difficult. For this purpose, powerful numerical analysis approaches, such as, the finite element method, in conjunction with high performance computers are being used to analyze the current rotor systems. The complexity in modeling bolted rotor behavior under various loadings, such as, airfoil, centrifugal and gravity loadings, including engine induced vibration is one of the main challenges of simulating the structural performance of an engine rotor. In addition, the internal structural temperature gradients that can be encountered in the transient state as a result of start-up and shutdown procedures are generally higher than those that occur in the steady-state and hence thermal shock is important factor to be considered relative to ordinary thermal stress. To address these issues, the current paper presents the steady-state & quasi-static analyses (to approximate transient responses) of two full 3-D industrial gas turbine engine rotors, SW501F & GE-7FA rotor, comprising of both compressor & turbine sections together. Full 3-D rotor analysis was carried out, since the 2-D axisymmetric model is inadequate to capture the complex geometries & out of plane behavior of the rotor. Both non-linear steady-state & transient analyses of a full gas turbine engine rotor was performed using the general purpose finite element analysis program ABAQUS. The paper presents in detail the FEA modeling technique, overall behavior of the full rotor under various loadings, as well as, the critical locations in the rotor with respect to its strength and life. The identification of these critical locations is needed to help with the repair of the existing rotors and to improve and extend the operational/service life of these rotors.


JOM ◽  
2003 ◽  
Vol 55 (3) ◽  
pp. 27-31 ◽  
Author(s):  
Mei Ling Clemens ◽  
Allen Price ◽  
Richard S. Bellows

Sign in / Sign up

Export Citation Format

Share Document