engine rotor
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 46)

H-INDEX

9
(FIVE YEARS 3)

Measurement ◽  
2022 ◽  
pp. 110696
Author(s):  
Maowei Zhang ◽  
Yongmeng Liu ◽  
Dawei Wang ◽  
Jiubin Tan

Author(s):  
Irina Homozkova

Two new three-frequency reference models of solid motion taking into account the vibrational environment are proposed. They are based on a four-frequency reference model of rotation [1], which implements rotations according to Krylov angles. For the developed models the analytical dependences for quasi-coordinates, projections of the angular velocity vector and components of the quaternion of orientation corresponding to such rotational motion are obtained. The urgency of taking into account the influence of vibration in traffic modeling on the basis of domestic and foreign literature in the field of navigation, including for the last 10 years. The main sources of vibration are described in detail and what types of oscillations they correspond to - harmonic oscillations occur in moving elements of onboard systems, such as the engine rotor, and in the engine unit and its units there are oscillations that have the character of random broadband noise. Methods of correction of such influence for increase of accuracy of definition of orientation of object are analyzed. The location of the components of the platformless inertial navigation system relative to the vibration sources is considered to be related to the strength of the influence of the vibration environment on the accuracy of the obtained data. Numerical implementations of the models are obtained and the drift error for the third-order orientation algorithm is estimated for several sets of specified parameters in a certain way. The parameters are chosen arbitrarily, but taking into account the existing restrictions on angular motion. The corresponding figures show the result for one of these sets of numerical values (which shows the result of the research in the most detail). The obtained results are compared with the corresponding results for the four-frequency rotation model [1]. The expediency of using new three-frequency models under certain conditions is shown.


Author(s):  
Yu-yuan Hsieh ◽  
Ming-Yi Tsai ◽  
Zhi-Zhe Xu

Abstract The study has developed a new machining process for the side seal components of gray cast iron alloy of rotor engine, which is different from the traditional WEDM (wire electrical discharge machining) process. The new manufacturing process (milling + grinding process) will save 78% of the cost and 83% of the time for making each side seal component, and the accuracy of the average surface roughness of the component will be 2.1 times that of the traditional manufacturing method. If the components are polished with a self-made polishing rod, the accuracy will be increased by almost 20 times compared with the new manufacturing process.


2021 ◽  
Vol 11 (19) ◽  
pp. 8883
Author(s):  
Bin Wu ◽  
Jiewei Lin ◽  
Reza Hedayati ◽  
Guichang Zhang ◽  
Junhong Zhang ◽  
...  

To study the effect of a bird striking engine fan on the rotor system, a low-pressure rotor system dynamic model based on a real aero-engine structure was established. Dynamic equations were derived considering the case of the bird strike force which transferred to the rotor system. The bird strike force was obtained from the bird strike process simulation in LS-DYNA, where a smoothed particle hydrodynamics (SPH) mallard model was constructed using a computed tomography (CT) scanner, and finite element method (FEM) was used to simulate the bird strike on an actual fan model. The dynamic equations were solved using the Newmark-β method. The effect of rotational speeds on the rotor system dynamics after bird strike was investigated and discussed. Results show that the maximum bird impact force can reach 104 kN at 3772 r/min. Impact time is only 0.06 s, but the bird strike on fan blades lead to a transient shock on the rotor system. Under the action of transient shocks, the rotor system displacement in the horizontal and vertical directions increase sharply, and the closer the mass point is to the fan, the more it is affected; the vibration amplitude at the fan will increase 15 times within 0.1 s of the bird strike and will gradually decrease with the effect of damping. The dynamics of the rotor system changes from a stable single periodic motion to a complex irregular quasi-periodic motion after a bird strike, and the strike force excites the first-order vibrational mode of the rotor system. This phenomenon occurs at all speeds when bird strikes occur. Bird strikes will cause resonance in the rotor system, which may cause damage to the engine. It was also seen that the bird strike force, and hence the effects on the rotor system, increases as the engine rotational speed increases; the peak force is larger and the number of peaks has increased. The impact force at 3772 r/min is 99.5 kN higher than at 836 r/min, and three additional peaks emerged. This effect is more reflected in the amplitude, and the overall vibration characteristics do not change. Combining the bird strike with the rotor dynamics calculation, the dynamic response of the aero-engine rotor system to bird strike is studied at different flight stages, which is of guiding significance for power evaluation of aero engines after bird strike.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5539
Author(s):  
Nannan Gu ◽  
Xi Wang ◽  
Meiyin Zhu

The traditional model predictive control (tMPC) algorithms have a large amount of online calculation, which makes it difficult to apply them directly to turboshaft engine–rotor systems because of real time requirements. Therefore, based on the theory of the perturbed piecewise affine system (PWA) and multi-parameter quadratic programming explicit model predictive control (mpQP-eMPC) algorithm, we develop a controller design method for turboshaft engine–rotor systems, which can be used for engine steady-state, transient state and limit protection control. This method consists of two steps: controller offline design and online implementation. Firstly, the parameter space of the PWA system is divided into several partitions offline based on the disturbance and performance constraints. Each partition has its own control law, which is in the form of piecewise affine linear function between the controller and the parameters. The control laws for those partitions are also obtained in this offline step. After which, for the online control implementation step, the corresponding control law can be obtained by a real-time query of a corresponding partition, which the current engine state falls into. This greatly reduces the amount of online calculation and thus improves the real-time performance of the MPC controller. The effectiveness of the proposed method is verified by simulating the steady-state and transient process of a turboshaft engine–rotor system with a limit protection requirement. Compared with tMPC, an mpQP-eMPC based controller can not only guarantee good steady-state, dynamic control performance and limit protection, but can also significantly improve the real-time performance of the control system.


Sign in / Sign up

Export Citation Format

Share Document