An FE Transient Response Analysis Model of a Flexible Rotor-Bearing System With Mount System to Base Shock Excitation

Author(s):  
An Sung Lee ◽  
Byung Ok Kim

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect turbomachinery from excessive shock forces, it may be needed to accurately analyze transient responses of rotors, considering the dynamics of mount designs to be applied with. In this study a generalized FE transient response analysis model, introducing relative displacements, is firstly proposed to accurately predict transient responses of a flexible rotor-bearing system with mount systems to base-transferred shock forces. In the transient analyses the state-space Newmark method of a direct time integration scheme is utilized, which is based on the average velocity concept. Results show that for the identical mount systems considered, the proposed FE-based detailed flexible rotor model yields more reduced transient vibration responses to the same shocks than a conventional simple model or a Jeffcott rotor. Hence, in order to design a rotor-bearing system with a more compact light-weighted mount system, preparing against any potential excessive shock, the proposed FE transient response analysis model herein is recommended.

2005 ◽  
Vol 38 (8) ◽  
pp. 749-756 ◽  
Author(s):  
Sanxing Zhao ◽  
Hua Xu ◽  
Guang Meng ◽  
Jun Zhu

Author(s):  
An Sung Lee ◽  
Byung Ok Kim

Turbomachinery such as turbines, pumps and compressors, which are installed in transportation systems such as warships, submarines and space vehicles, etc., often perform crucial missions and are exposed to potential dangerous impact environments such as base-transferred shock forces. To protect the machines from such excessive shock forces, one may need to accurately analyze transient responses of rotors earlier on in their design stages, considering the dynamics of mount designs to be applied with. In this study, utilizing the generalized FE transient response analysis method of a flexible rotor-bearing system with a mount system to base-transferred shock forces, constructions of the shock response and static deflection maps of turbine rotor-bearing and mount system are devised, introducing the mount mass, resilient support stiffness and damping ratios to the counterpart rotor mass, bearing stiffness and damping and the mount system natural frequency. For the given turbine rotor system design a best available mount system design, composed of a mount plate and resilient support, can be readily selected from the constructed maps to meet the rotor’s shock response and mount’s static design limits. The shock response maps also show that for the same shock the FE flexible rotor model used herein yield a more compact light-weighed mount system design than the conventional simple rigid rotor model. Therefore, the shock response map approach in conjunction with the more complicated FE flexible rotor transient response analysis method is justified.


1983 ◽  
Vol 105 (3) ◽  
pp. 480-486 ◽  
Author(s):  
M. Sakata ◽  
T. Aiba ◽  
H. Ohnabe

In the field of rotor dynamics, increased attention is being given to the transient response analysis of the rotor, since the effects of impact loading and vibrations of the rotor arising from blade loss can be studied by a time transient solution of the rotor system. As recent trends in rotating machinery have been directed towards lightweight, high-speed flexible rotors, the effect of flexibility on transient response analysis is becoming of increasing importance. In the present paper, a transient vibration analysis is carried out on a flexible-disk/flexible-shaft system or rigid-disk flexible-shaft system subjected to a sudden imbalance that is assumed to represent the effect of blade loss. To solve the basic equation governing a rotating flexible disk the Galerkin’s method is used, and the equation of motion of the rotor system is numerically solved by employing the Runge-Kutta-Gill’s method. Experiments were conducted on a model rotor having a blade loss simulator; the shaft vibrations were also measured. The validity of the anaytical results was demonstrated by comparison with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document