composite panel
Recently Published Documents


TOTAL DOCUMENTS

672
(FIVE YEARS 188)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
Anil Kumar ◽  
◽  
Surjit Angra ◽  
Arindam Kumar Chanda ◽  
◽  
...  

A sandwich structure consists of three main parts i.e. the facing skins, the core and the adhesive. It acts in a way similar to that of the I- Beam. In this research, a sandwich structure has been designed with a regular hexagon honey-comb core made up of Kevlar® and face sheet of carbon fiber. The design has been modelled and the model has also been validated with the experimental and analytical method. Six different configurations of sandwich structures have been proposed. Out of these six, three configurations have the varying cell size i.e. 3.2 mm, 4 mm and 4.8 mm and the other three configurations have the varying panel width i.e. 40 mm, 45 mm and 50 mm keeping rest of the design parameters unchanged. Using ANSYS, analysis has been performed for all these six configurations and equivalent stiffness has been calculated. It has been observed that the honeycomb core cell size does not have a significant effect on the stiffness properties of a composite sandwich panel. The analysis also reveals that with the increased panel width the stiffness of composite panel increases significantly.


Abstract Laminated composite shell panels take part in several engineering structures. Due to their complex nature, failure modes in composites are highly dependent on the geometry, direction of loading and orientation of the fibers. However, the design of composite parts is still a delicate task because of these fiber failure modes, which includes matrix failure modes or other so-called interlaminar interface failure such as delamination, that corresponds to the separation of adjacent layers of the laminate as a consequence of the weakening of interface layer between them. In this work, impact-induced delamination represented as a circular single delamination is investigated, as it can reduce greatly the structural integrity without getting detected. Furthermore, attention is focused on its effect upon the post-buckling response and the compressive strength of a composite panel. The delamination buckling was modelled using the cohesive element technique under Abaqus software, in order to predict delamination growth and damage propagation while observing their effects on the critical buckling load.


2021 ◽  
Vol 10 (2) ◽  
pp. 281-288
Author(s):  
Marwa Othmen ◽  
Radwen Bahri ◽  
Slaheddine Najar ◽  
Ahmed Hannachi

Abstract. This article aims to present equipment designed and developed to study the effective thermal conductivity of composite panels. The composite panel used is a rigid polyurethane foam covered with a layer of aluminum on both sides. The panel is mounted in the test chamber equipped with several sensors and actuators connected via an Arduino platform. Tests have been carried out by applying heat to impose various interior temperatures. Sensors at different locations are used to monitor and record temperatures in and around the composite panel during heating and natural cooling. A model, based on the Fourier equations of thermal conduction and natural convection heat transfer for the steady state, was developed to assess the effective thermal conductivity. The performance of the system was confirmed using temperature signals through the panels for thermal characterization of composite materials. The determined effective thermal conductivity obtained was in agreement with the experimental values reported in the technical data sheets with relative deviations of less than 10 %.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8183
Author(s):  
Piotr Fiborek ◽  
Paweł Kudela

One of the axioms of structural health monitoring states that the severity of damage assessment can only be done in a learning mode under the supervision of an expert. Therefore, a numerical analysis was conducted to gain knowledge regarding the influence of the damage size on the propagation of elastic waves in a honeycomb sandwich composite panel. Core-skin debonding was considered as damage. For this purpose, a panel was modelled taking into account the real geometry of the honeycomb core using the time-domain spectral element method and two-dimensional elements. The presented model was compared with the homogenized model of the honeycomb core and validated in the experimental investigation. The result of the parametric study is a function of the influence of damage on the amplitude and energy of propagating waves.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4200
Author(s):  
Junqing Hong ◽  
Chunyan Shen ◽  
Weiqing Liu ◽  
Hai Fang ◽  
Laiyun Yang

Combining the improved C0 plate element using high-order zigzag theories and the beam element degenerated from the plate element, a type of analysis model for the sandwich lattice composite panel was developed. Compared with the actual test results including the mid-span deflections and the surface sheet normal stresses, the outstanding of that method was presented through numeric calculation. The results showed that the model has great potential to become an excellent and highly efficient analysis and design tool for sandwich lattice composite panel to avoid the conventional three-dimension hybrid element model, which usually may lead to the complex program establishment, and the coupling degrees of freedom among the different types of elements.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiang Liu ◽  
Xuanyi Zhou ◽  
Jianxin Zhu ◽  
Xiaoping Gong

The noise of a cab directly affects the comfort and labor efficiency of the operators. The optimization of the structure-borne transmission path can obviously reduce the cab noise. The method of panel acoustic contribution analysis (PACA) is used to reduce structure noise. However, most studies only consider the panel acoustic contribution of a single frequency, without considering the contribution of major frequencies synthesis to confirm the optimized panels. In this paper, a novel method is proposed based on composite panel acoustic and modal contribution analysis and noise transfer path optimization in a vibro-acoustic model. First, the finite element model (FEM) and the acoustic model are established. Based on the acoustic transfer vector (ATV) method, a composite panel acoustic contribution analysis method is proposed to identify the panels affecting the noise of the field point. Combined with the modal acoustic contribution of the modal acoustic transfer vector (MATV) method, the noise field point is confirmed in the area which has the most significant influence. Second, the optimization algorithm NLOPT which is a nonlinear optimization is applied to design the areas. The noise transfer path optimization with vibroacoustic coupling response can quickly determine the optimal thickness of the panels and reduce low-frequency noise. The effectiveness of the proposed method is applied and verified in an excavator cab. The sound pressure level (SPL) the driver’s right ear (DRE) decreased obviously. The acoustic analysis of the composite panel acoustic contribution and modal acoustic contribution can more accurately recognize an optimized area than the traditional PACA. This method can be applied in the optimization of the structure-borne transmission path for construction machinery cab and vehicle body.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1860
Author(s):  
Asghar Heydari Astaraee ◽  
Antonio Salerno ◽  
Sara Bagherifard ◽  
Pierpaolo Carlone ◽  
Hetal Parmar ◽  
...  

Cold Spray is an innovative technology to create coatings through the impact of metallic particles on substrates. Its application to composites’ surfaces is recently attracting the attention of the scientific community thanks to the possibility to functionalize and improve their thermal and wear properties. Within this context, the generation of the first metal-to-composite layer is fundamental. This work presented an experimental investigation of a composite panel, reinforced with glass fibers and coated with aluminum particles. The coating investigation was carried out through active pulsed thermography, analyzing the thermal response of single and double hatches. The thermal outputs were compared with a standard microscopic analysis, with a critical discussion supporting the identification of factors that influence the thermal response to the pulse: (1) layer’s thickness; (2) cold spray coverage; (3) layer compactness; (4) particle-substrate adhesion; (5) particle’s oxidation; and (6) surface roughness.


Sign in / Sign up

Export Citation Format

Share Document