A New Energy-Based Multiaxial Fatigue Life Prediction Procedure

Author(s):  
Wasim Tarar ◽  
Onome Scott-Emuakpor ◽  
M.-H. Herman Shen ◽  
Tommy George ◽  
Charles Cross

An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. The final output of this finite element analysis is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the most common cause of failure in gas turbine engines. Different design tools have been developed to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A finite element approach for uniaxial and bending fatigue was developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new QUAD-4 finite element for fatigue life prediction. The newly developed QUAD-4 element is further modified to obtain a plate element. The Plate element can be used to model plates subjected to biaxial fatigue including bending loads. The new QUAD-4 element is benchmarked with previously developed uniaxial tension/compression finite element. The comparison of Finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components. The performance of the fatigue finite element is demonstrated by the fatigue life predictions from Al6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions.


Author(s):  
Wasim Tarar ◽  
M.-H. Herman Shen

High cycle fatigue is the major governing failure mode in aerospace structures and gas turbine engines. Different design tools are available to predict number of cycles to failure for a component subjected to fatigue loads. An energy-based fatigue life prediction framework was previously developed in recent research for prediction of axial, bending and torsional fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. A 1-D ROD element for unixial fatigue, a BEAM element for bending fatigue and a QUAD-4 element for biaxial fatigue were developed by authors based on this constitutive law. In this study, the energy expressions that construct the new constitutive law are integrated into minimum potential energy formulation to develop a new HEX-8 BRICK finite element for fatigue life prediction. The newly developed HEX-8 BRICK element has 8 nodes and each node has 3 degrees of freedom (DOF) in x, y and z directions. This element is further modified to add the rotational and bending DOFs for application to real world three dimensional (3D) structures and components. HEX-8 BRICK fatigue finite element has capability to predict the number of cycles to failure for 3-D objects subjected to multiaxial stresses. The new HEX-8 element is benchmarked with previously developed uniaxial tension/compression finite element in order to verify the new development. The comparison of finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element development for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can predict the number of cycles to failure at each location in gas turbine engine structural components. The new finite element provides a very useful tool for fatigue life prediction in gas turbine engine components as it provides a complete picture of fatiguing process. The performance of the HEX-8 fatigue finite element is demonstrated by comparison of life prediction results for A16061-T6 to previously developed multiaxial fatigue life prediction approach by the authors. Another set of comparison is made to results for type 304 stainless steel data.


Author(s):  
Wasim Tarar ◽  
Onome Scott-Emuakpor ◽  
M.-H. Herman Shen

An energy-based fatigue life prediction framework was previously developed by the authors [1–4] for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, the energy expressions that construct the new constitutive law is integrated into minimum potential energy formulation to develop a new finite element for fatigue life prediction. The comparison of Finite element method (FEM) results to existing experimental fatigue data, verifies the new finite element method for fatigue life prediction. The final output of this finite element analysis is in the form of number of cycles to failure for each element in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure for each element in gas turbine engine structural components. The performance of the fatigue finite element is demonstrated by the fatigue life predictions from 6061-T6 aluminum and Ti-6Al-4V. Results are compared with experimental results and analytical predictions [1].


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Guoyu Feng ◽  
Wenku Shi ◽  
Henghai Zhang ◽  
Qinghua Zu ◽  
Teng Teng ◽  
...  

Purpose of this paper is to investigate the fatigue life prediction method of the thrust rod based on the continuum damage mechanics. The equivalent stress used as damage parameters established rubber fatigue life prediction model. Through the finite element simulation and material test, the model parameters and the fatigue damage dangerous positions were obtained. By equivalent stress life model, uniaxial fatigue life of the V-type thrust rod is analyzed to predict the ratio of life and the life of the test was 1.73, within an acceptable range, and the fatigue damage occurring position and finite element analysis are basically the same. Fatigue life analysis shows that the method is of correct, theoretical, and practical value.


Author(s):  
NN Subhash ◽  
Adathala Rajeev ◽  
Sreedharan Sujesh ◽  
CV Muraleedharan

Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis–based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis–based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.


2019 ◽  
Vol 8 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Samuel O. Afolabi ◽  
Bankole I. Oladapo ◽  
Christianah O. Ijagbemi ◽  
Adeyinka O.M. Adeoye ◽  
Joseph F. Kayode

Sign in / Sign up

Export Citation Format

Share Document