scholarly journals Research on the Fatigue Life Prediction Method of Thrust Rod

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Guoyu Feng ◽  
Wenku Shi ◽  
Henghai Zhang ◽  
Qinghua Zu ◽  
Teng Teng ◽  
...  

Purpose of this paper is to investigate the fatigue life prediction method of the thrust rod based on the continuum damage mechanics. The equivalent stress used as damage parameters established rubber fatigue life prediction model. Through the finite element simulation and material test, the model parameters and the fatigue damage dangerous positions were obtained. By equivalent stress life model, uniaxial fatigue life of the V-type thrust rod is analyzed to predict the ratio of life and the life of the test was 1.73, within an acceptable range, and the fatigue damage occurring position and finite element analysis are basically the same. Fatigue life analysis shows that the method is of correct, theoretical, and practical value.

Author(s):  
Yan Peng ◽  
Yang Liu ◽  
Haoran Li ◽  
Jiankang Xing

Abstract To address the difficult problems in the study of the effect of average strain on fatigue life under low-cycle fatigue loads, the effect of average strain on the low-cycle fatigue life of materials under different strain cycle ratios was discussed based on the framework of damage mechanics and its irreversible thermodynamics. By introducing the Ramberg-Osgood cyclic constitutive equation, a new low-cycle fatigue life prediction method based on the intrinsic damage dissipation theory considering average strain was proposed, which revealed the correlation between low-cycle fatigue strain life , material properties, and average strain. Through the analysis of the low-cycle fatigue test data of five different metal materials, the model parameters of the corresponding materials were obtained. The calculation results indicate that the proposed life prediction method is in good agreement with the test, and a reasonable characterization of the low-cycle fatigue life under the influence of average strain is realized. Comparing calculations with three typical low-cycle fatigue life prediction models, the new method is within two times the error band, and the prediction effect is significantly better than the existing models, which is more suitable for low-cycle fatigue life prediction. The low-cycle fatigue life prediction of different cyclic strain ratios based on the critical region intrinsic damage dissipation power method provides a new idea for the research of low-cycle fatigue life prediction of metallic materials.


Author(s):  
Wasim Tarar ◽  
Onome Scott-Emuakpor ◽  
M.-H. Herman Shen ◽  
Tommy George ◽  
Charles Cross

An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial and bending fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. The final output of this finite element analysis is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.


Author(s):  
NN Subhash ◽  
Adathala Rajeev ◽  
Sreedharan Sujesh ◽  
CV Muraleedharan

Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis–based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis–based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.


2011 ◽  
Vol 346 ◽  
pp. 483-489
Author(s):  
Ying Shuang Zhang ◽  
Guo Qiang Wang ◽  
Ji Xin Wang

To realize the structural light weighting design of the transmission components of engineering vehicles on the basis of life in control, this paper took wheel loader as an example, collected the time-domain load signals of the transmission system in typical working conditions, provided processing steps for load spectrum synthesis by a certain percentage, and generated the program load spectrum which consisted of various amplitudes and means. The load spectrum can be used for fatigue loading at the output flange of gearbox. Then, the finite element model of the flange was established, and the stress analysis was carried out in the stress concentration location such as fillet. The prediction method of fatigue life on the base of program load spectrum was given. After the fatigue life prediction based on the compiled load spectrum and the theory of cumulative fatigue damage, the fatigue life of outside fillet of the flange, where is of maximum stress, is obtained. It was possible to obtain adequately fatigue prediction results in engineering vehicle design, using load spectrum, finite element analysis, and a stress-life approach to fatigue damage calculations.


2012 ◽  
Vol 472-475 ◽  
pp. 591-595 ◽  
Author(s):  
Jun Liu ◽  
Feng Peng Zhang

Abstract. based on the accumulating fatigue damage model, with single ply plate theory and experiment data as the foundation, consider the interaction between adjacent layer and material degradation, a kind of fatigue life prediction method of fiber reinforced composite laminates is developed. The stiffness decline of each ply during cyclic loading is determined by the fatigue damage variable and the load amplitude and the fatigue life of any laminates can be predicted using the fatigue properties of single ply plate. Using this method a 3D Finite element model is established by ABAQUS software and the fatigue life and the fatigue damage evolution of a T300 / QY8911 laminats are analyzed, the results are more closer to the experimental results.


2019 ◽  
Vol 8 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Samuel O. Afolabi ◽  
Bankole I. Oladapo ◽  
Christianah O. Ijagbemi ◽  
Adeyinka O.M. Adeoye ◽  
Joseph F. Kayode

2019 ◽  
Vol 28 (9) ◽  
pp. 1438-1454 ◽  
Author(s):  
Long Pan ◽  
Jian Chao Pang ◽  
Yu Jun Xie ◽  
Meng Xiao Zhang ◽  
Liang Liang Nie ◽  
...  

Due to the higher reliability needs of the large moving component motor-generator rotor, the assessment of the service life has drawn more and more attention. After finite element analysis of the rotor, the simulation part which can represent the magnetic pole with the most dangerous position of the rotor was designed to investigate the S–N curves. Compared with the conventional specimen, considering the main influencing factors of fatigue life for simulation part, the comprehensive factor was proposed to establish the fatigue life relationship between magnetic pole material and simulation part. It was found that the calculation method of fatigue notch factor based on the notch sensitivity factor is relatively simple and practical, and there is no significant effect of surface roughness on high and low cycle fatigues for low roughness ( R a is about 1 µm), and the dimension factor changes linearly with the scale factor. Based on those results, a fatigue life prediction method was proposed and validated, and the predicted results were in good agreement with the experimental data. This study will provide a reasonable reference to determine the fatigue life prediction of large moving components.


Sign in / Sign up

Export Citation Format

Share Document