A Novel Flue Gas Heat Recovery System Integrated With Air Preheating in a Utility Boiler

Author(s):  
Cheng Xu ◽  
Gang Xu ◽  
Luyao Zhou ◽  
Yongping Yang ◽  
Yuanyuan Li ◽  
...  

Exhaust gas temperature in coal-fired power plants can reach approximately 120 °C to 140 °C, with the thermal energy accounting for approximately 3% to 8% of the total input energy. Therefore, the heat recovery of exhaust flue gas can improve the thermal efficiency of coal-fired power plants. Currently, the waste heat of flue gas can be recovered by installing an extra heat exchanger, also called low-temperature economizer (LTE), at the end of the boiler flue to heat a part of the condensed water. Extra work can then be obtained by saving the extracted steam and using it to heat the condensed water. However, the temperature of exhaust flue gas is only about 130 °C, which causes the flue gas to heat only the condensed water in the #7 and #8 regenerative heaters. Thus, the energy savings are inconspicuous. This paper proposes a novel flue gas heat recovery system to dramatically increase the temperature of flue gas in the LTE by comprehensive optimization of the air preheater and the LTE. A low-temperature (LT) air preheater can be installed after the LTE in the novel system so that the flue gas can be divided into two parts to heat the air. Simultaneously, the LTE can be installed between the two air preheaters, causing the temperature of flue gas in the LTE to reach above 170 °C. Hence, the temperature of condensed water in the LTE can be increased significantly. In addition, the LTE can replace the high-pressure extracted steam from the turbine, resulting in better energy savings. We also conduct case studies based on a typical 1,000 MW supercritical power generation unit in China. The results indicate better performance of the novel system, with a decrease in exergy loss and improvement in heat transfer characteristics. The reduction in standard coal equivalent of the novel system can reach 3.31g/kWh, nearly 2.4 times that of the system that uses conventional waste heat recovery. Our achievements provide a promising waste heat recovery methods of the utility boiler flue gas.

Author(s):  
Antonio Agresta ◽  
Antonella Ingenito ◽  
Roberto Andriani ◽  
Fausto Gamma

Following the increasing interest of aero-naval industry to design and build systems that might provide fuel and energy savings, this study wants to point out the possibility to produce an increase in the power output from the prime mover propulsion systems of aircrafts. The complexity of using steam heat recovery systems, as well as the lower expected cycle efficiencies, temperature limitations, toxicity, material compatibilities, and/or costs of organic fluids in Rankine cycle power systems, precludes their consideration as a solution to power improvement for this application in turboprop engines. The power improvement system must also comply with the space constraints inherent with onboard power plants, as well as the interest to be economical with respect to the cost of the power recovery system compared to the fuel that can be saved per flight exercise. A waste heat recovery application of the CO2 supercritical cycle will culminate in the sizing of the major components.


2014 ◽  
Vol 67 (1-2) ◽  
pp. 240-249 ◽  
Author(s):  
Gang Xu ◽  
Cheng Xu ◽  
Yongping Yang ◽  
Yaxiong Fang ◽  
Yuanyuan Li ◽  
...  

2019 ◽  
Vol 150 ◽  
pp. 200-209 ◽  
Author(s):  
Min Yan ◽  
Chunyuan Ma ◽  
Qiuwan Shen ◽  
Zhanlong Song ◽  
Jingcai Chang

Author(s):  
Lei Deng ◽  
Chunli Tang ◽  
Xiaowen Tan ◽  
Ke Sun ◽  
Song Wu ◽  
...  

For a better utilization of Zhundong coals which have high fouling and slagging tendency, the slag-tap boiler has attracted much attention. To avoid the high sensible heat loss of discharged molten slag, an air-cooling waste heat recovery system is proposed. Energy and economic analyses are conducted to investigate the effectiveness of heating the desulfurized flue gas by hot air and the influences of partially substituting the secondary air by hot air on heat transfer of air preheater and thermal efficiency of boiler. A case study is performed by referring to a typical 50 MW cyclone boiler with nine types of low fusion temperature coals. The results show that for coals with low ash content, the temperature increment of desulfurized flue gas can be over 7 ℃. While for coals with high ash content, the flue gas temperature can be heated to more than 70 ℃, and the surplus hot air can be sent to the furnace. When the hot air is introduced to partially substitute the secondary air, an instantaneous impact on the air preheater will give rise to a decrement of quantity of heat transferred and increments of temperatures of exit flue gas and hot secondary air. The variations of these thermodynamic parameters become smaller with increasing hot air temperature. After introduction of hot air, the thermal efficiency of boiler can increase, resulting in a decrease of fuel consumption rate. In addition, the heating surface area of air preheater can be reduced.


2019 ◽  
Vol 196 ◽  
pp. 649-663 ◽  
Author(s):  
Yiyu Men ◽  
Xiaohua Liu ◽  
Tao Zhang ◽  
Xi Xu ◽  
Yi Jiang

2014 ◽  
Vol 926-930 ◽  
pp. 829-832
Author(s):  
Yan Feng Liu ◽  
Peng Cheng Wang ◽  
Shao Shan Zhang

Flue gas recycling system is an effective way of saving energy and improving efficiency for coal-fired power plant. In this paper, the general low-temperature economizer, heat pipe type low temperature economizer, composite phase change heat recovery system are introduced. Combined with a 600MW unit parameters, the economies of various waste heat recovery system are compared.


2021 ◽  
Vol 39 (5) ◽  
pp. 1680-1688
Author(s):  
Xutong Wang ◽  
Meng Zhang

The waste heat recovered by traditional industrial waste heat recovery systems is mostly high-temperature flue gas and combustible gas, while the waste heat of medium and low temperature flue gas that accounts for more than 50% of the total waste heat resources has been ignored, which is not conducive to the effective energy saving of industrial production and manufacturing process. In the meantime, few studies have concerned about the changes in the economy of circulating industrial waste heat recovery system. Therefore, to fill in this research gap, this paper aimed at the economy problem of circulating medium and low temperature industrial waste heat recovery system and carried out a series of research. The paper completed the thermodynamic analysis of different medium and low temperature waste heat recovery modes of industrial flue gas, and gave the analysis steps of the economy of circulating medium and low temperature waste heat recovery system of industrial flue gas. The effectiveness and accuracy of the thermodynamic and thermo-economic models constructed in the paper were proved by experimental results.


Sign in / Sign up

Export Citation Format

Share Document