An Innovative Method for the Evaluation of Particle Deposition Accounting for the Rotor/Stator Interaction

Author(s):  
Nicola Aldi ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Alessio Suman

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system can cause deposits on blading and, consequently, result in a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0.15 μm – 1.50 μm) in a transonic axial compressor stage, carried out by means of a commercial computational fluid dynamic code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. A particular computational strategy is adopted in order to take into account the presence of two subsequent annular cascades (rotor and stator) in the case of particle ingestion. The proposed strategy allows the evaluation of particle deposition in an axial compressor stage thanks to its capability of accounting for the rotor/stator interaction. NASA Stage 37 is considered as a case study for the numerical investigation. The compressor stage numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in literature. The blade zones affected by particle impact and the kinematic characteristics of the impact of micrometric and sub-micrometric particles with the blade surface are shown. Both blade zones interested by particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability, adopted from literature. The sticking probability links the kinematic characteristics of particle impact on the blade with fouling phenomenon. The results show that micro-particles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side of rotor blade and stator vane. Both rotor blade and stator vane suction side are affected only by the impact of smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, shock waves and tip leakage vortex, strongly influence the impact location of the particles. The kinematic analysis shows a high tendency of particle adhesion on the suction side of the rotor blade, especially for particles with a diameter equal to 0.15 μm.

Author(s):  
Nicola Aldi ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Alessio Suman

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the microparticles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in the compressor performance. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0.15–1.50 μm) in a transonic axial compressor stage, carried out by means of a commercial computational fluid dynamic code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by the flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. A particular computational strategy is adopted in order to take into account the presence of two subsequent annular cascades (rotor and stator) in the case of particle ingestion. The proposed strategy allows the evaluation of particle deposition in an axial compressor stage, thanks to its capability of accounting for rotor/stator interaction. NASA Stage 37 is used as a case study for the numerical investigation. The compressor stage numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in the literature. The blade zones affected by the particle impact and the kinematic characteristics of the impact of micrometric and submicrometric particles with the blade surface are shown. Both blade zones affected by the particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability, adopted from the literature. The sticking probability links the kinematic characteristics of particle impact on the blade with fouling phenomenon. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side of rotor blade and stator vane. Both the rotor blade and stator vane suction side are only affected by the impact of smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, shock waves, and tip leakage vortex, strongly influence the impact location of the particles. The kinematic analysis shows a high tendency of particle adhesion on the suction side of the rotor blade, especially for particles with a diameter equal to 0.15 μm.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Devid Dainese ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in compressor performance. In literature there are some studies related to the fouling phenomena in transonic compressors, but in industrial applications (heavy-duty compressors, pump stations, etc.) the subsonic compressors are widespread. It is highly important for the manufacturer to gather information about the fouling phenomenon related to this type of compressor. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0.15 μm – 1.50 μm) in a multistage (i.e. eight stage) subsonic axial compressor, carried out by means of a commercial computational fluid dynamic code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The adopted computational strategy allows the evaluation of particle deposition in a multistage axial compressor thanks to the use of a mixing plane approach to model the rotor/stator interaction. The compressor numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in literature. The number of particles and sizes are specified in order to perform a quantitative analysis of the particle impacts on the blade surface. The blade zones affected by particle impacts and the kinematic characteristics (velocity and angle) of the impact of micrometric and sub-micrometric particles with the blade surface are shown. Both blade zones affected by particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability, adopted from literature. The sticking probability links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. The results show that micro-particles tend to follow the flow by impacting on the compressor blades at full span. The suction side of the blade is only affected by the impacts of the smallest particles. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the impact location of the particles. The impact and deposition trends decrease according to the stages. The front stages appear more affected by particle impact and deposition than the rear ones.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Devid Dainese ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system can cause deposits on blades and, consequently, can result in a decrease in compressor performance. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. However, this information often refers to single stage analysis. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0.15 μm – 1.50 μm) in a multistage (i.e. eight stage) subsonic axial compressor, carried out by means of a commercial CFD code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The effects of humidity, or more generally, the effects of a third substance at the particle/surface interface (which is considered one of the major promoters of fouling) is then studied. The behavior of wet and oiled particles, in addition to the usual dry particles, is taken into consideration. In the dry case, the particle deposition is established only by using the sticking probability. This quantity links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. In the other two cases, the effect of the presence of a third substance at the particle/surface interface is considered by means of an energy-based model. Moreover, the influence of the tangential impact velocity on particle deposition is analyzed. Introducing the effect of a third substance, such as humidity or oil, the phenomenon of fouling concerns the same areas of the multistage compressor. The most significant results are obtained by combining the effect of the third substance with the effect of the tangential component of the impact velocity of the particles. The deposition trends obtained with these conditions are comparable with those reported in literature, highlighting how the deposits are mainly concentrated in the early stages of a multistage compressor. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the location of particle deposits.


Author(s):  
Alessio Suman ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Mirko Morini ◽  
Klaus Brun ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the turbine and compressor sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which areas of the compressor airfoils are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. Then, the NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase treatment have been validated against the experimental and numerical data available in literature. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. The results show that micro-particles tend to follow the flow by impacting at full span with an higher impact concentration on the pressure side. The suction side is affected only by the impact of the smaller particles (up to 1 μm). Particular fluid-dynamic phenomena such as separation, stagnation point and tip leakage vortex strongly influence the impact location of the particles.


Author(s):  
Alessio Suman ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Mirko Morini ◽  
Klaus Brun ◽  
...  

In literature there are some studies related to the fouling phenomena in transonic compressors, but, in industrial applications (heavy-duty compressor, pump stations, etc.) the subsonic compressors are widespread. It is of great interest to the manufacturer to discover the fouling phenomenon related to this type of compressor. This paper presents three-dimensional numerical simulations of the micro-particle ingestion on a subsonic axial compressor rotor carried out by means of a commercial computational fluid dynamic code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. In this paper the particle impact pattern and the kinematic characteristics (velocity and angle) of the impact are shown. Both of the blade zones affected by particle impact and the blade zones affected by particle deposition are analyzed. The particle deposition is established by using the quantity called sticking probability. The sticking probability links the kinematic characteristics of particle impact on the blade with fouling phenomenon. The results show that micro-particles tend to follow the flow by impacting at full span with a higher impact concentration on the leading edge. The suction side is affected only close to the leading edge and, at the hub, close to the trailing edge. Particular fluid-dynamic phenomena such as separation, stagnation and tip leakage vortex strongly influence the impact location of the particles. The kinematic analysis showed a high tendency of particle adhesion on the suction side, especially for smaller particles for which the fluid dynamic phenomena play a key role regarding particle impact velocity and angle.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Devid Dainese ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the microparticles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in compressor performance. In the literature, there are some studies related to the fouling phenomena in transonic compressors, but in industrial applications (heavy-duty compressors, pump stations, etc.), the subsonic compressors are widespread. It is highly important for the manufacturer to gather information about the fouling phenomenon related to this type of compressor. This paper presents three-dimensional (3D) numerical simulations of the microparticle ingestion (0.15–1.50 μm) in a multistage (i.e., eight stage) subsonic axial compressor, carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The adopted computational strategy allows the evaluation of particle deposition in a multistage axial compressor thanks to the use of a mixing plane approach to model the rotor/stator interaction. The compressor numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in the literature. The number of particles and sizes is specified in order to perform a quantitative analysis of the particle impacts on the blade surface. The blade zones affected by particle impacts and the kinematic characteristics (velocity and angle) of the impact of micrometric and submicrometric particles with the blade surface are shown. Both blade zones affected by particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability (SP), adopted from the literature. The SP links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. The results show that microparticles tend to follow the flow by impacting on the compressor blades at full span. The suction side (SS) of the blade is only affected by the impacts of the smallest particles. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the impact location of the particles. The impact and deposition trends decrease according to the stages. The front stages appear more affected by particle impact and deposition than the rear ones.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Alessio Suman ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Mirko Morini ◽  
Klaus Brun ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the turbine and compressor sections of gas turbines. In particular, in industrial applications, the microparticles that are not captured by the air filtration system cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the microparticle ingestion (0 μm–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which areas of the compressor airfoils are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. Then, the NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase treatment have been validated against the experimental and numerical data available in literature. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the pressure side (PS). The suction side (SS) is affected only by the impact of the smaller particles (up to 1 μm). Particular fluid dynamic phenomena, such as separation, stagnation point, and tip leakage vortex, strongly influence the impact location of the particles.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

In heavy-duty gas turbines, the micro-particles not captured by the air filtration system can cause fouling and, consequently, a performance drop of the compressor. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0–2 μm) on an axial compressor rotor carried out by means of a commercial computational fluid dynamic code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The NASA Rotor 37 is considered as a case study for the numerical investigation. The compressor rotor numerical model and the discrete phase model were previously validated by the authors in the first part of this work. The kinematic characteristics (velocity and angle) of the impact of micrometric and sub-micrometric particles with the blade surface of an axial transonic compressor are shown. The blade zones affected by particle impact were extensively analyzed and reported in the first part of this work, forming the starting point for the analyses shown in this paper. The kinematic analysis showed a high tendency of particle adhesion on the suction side, especially for the particles with a diameter equal to 0.25 μm. Fluid dynamic phenomena and airfoil shape play a key role regarding particle impact velocity and angle. This work has the goal of combining, for the first time, the kinematic characteristics of particle impact on the blade with fouling phenomenon by the use of a quantity called sticking probability adopted from literature. From these analyses, some guidelines for a proper management of the power plant (in terms of filtration and washing strategies) are highlighted.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor section of heavy-duty gas turbines. Usually, foulants in the ppm range, not captured by the air filtration system, i.e., (0–2) μm cause deposits on blading and result in a severe performance drop of the compressor. It is of great interest to the industry to determine which areas of the compressor airfoils are interested by these contaminants as a function of the location of the power unit. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. The size of the particles, their concentrations, and the filtration efficiency are specified in order to perform a realistic quantitative analysis of the fouling phenomena in an axial compressor. This study combines, for the first time, the impact/adhesion characteristic of the particles obtained through a computational fluid dynamics (CFD) and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by the deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface in terms of contaminant mass. The analysis showed that particular fluid-dynamic phenomena such as separation, shock waves, and tip leakage vortex strongly influence the pattern deposition. The combination of the smaller particles (0.15 μm) and the larger ones (1.50 μm) determines the highest amounts of deposits on the leading edge (LE) of the compressor airfoil. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn.


Author(s):  
Alessio Suman ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Mirko Morini ◽  
Klaus Brun ◽  
...  

In literature, there are some studies related to the fouling phenomena in transonic compressors, but, in industrial applications (heavy-duty compressor, pumping stations, etc.) the subsonic compressors are widespread. It is of great interest to the manufacturer to discover the fouling phenomenon related to this type of compressor. This paper presents three-dimensional numerical simulations of the microparticle ingestion on a subsonic axial compressor rotor carried out by means of a commercial computational fluid dynamic code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separate from the continuous phase. The number of particles, sizes, and concentrations are specified in order to perform a quantitative analysis of the particle impact on the blade surface. In this paper, the particle impact pattern and the kinematic characteristics (velocity and angle) of the impact are shown. Both of the blade zones affected by particle impact and the blade zones affected by particle deposition are analyzed. The particle deposition is established by using the quantity called sticking probability (SP). The SP links the kinematic characteristics of particle impact on the blade with fouling phenomenon. The results show that microparticles tend to follow the flow by impacting at full span with a higher impact concentration on the leading edge (LE). The suction side (SS) is affected only close to the LE and, at the hub, close to the trailing edge (TE). Particular fluid-dynamic phenomena such as separation, stagnation, and tip leakage vortex strongly influence the impact location of the particles. The kinematic analysis showed a high tendency of particle adhesion on the SS, especially for smaller particles for which the fluid dynamic phenomena play a key role regarding particle impact velocity and angle.


Sign in / Sign up

Export Citation Format

Share Document