particle ingestion
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 8)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
pp. 1-45
Author(s):  
Alessandro Vulpio ◽  
Alessio Suman ◽  
Nicola Casari ◽  
Michele Pinelli

Abstract Gas turbine particle ingestion may lead to the deposition of contaminants in the compressor section, inducing the performance losses of the whole engine. The economic losses derived from this issue push great interest in the investigation of such a phenomenon from a numerical and experimental standpoint. This paper describes a quantitative approach to predict particle deposition on the vanes of an axial compressor starting from the flow field obtained employing CFD simulations. The results are then compared to the experiments performed on the Allison 250 C18 compressor unit subject to particle ingestion under controlled conditions. The results derived from the experimental and numerical investigations are presented, providing insight into the mass deposited on the vanes and the corresponding zones most affected by the particle deposition issue. The numerical model showed good agreement in the estimation of the predicted values of the deposited mass and the corresponding patterns through the compressor stages. The low-complexity approach proposed here, helps the designer to predict the contamination of the stationary rows starting from a simple set of single-phase numerical results. Furthermore, with the implementation of this approach into the design path, the designer could reduce the impact of fouling, looking at the effects of their solutions under the fouling-reduction light.


2021 ◽  
Vol 118 (50) ◽  
pp. e2110281118
Author(s):  
Gen Honda ◽  
Nen Saito ◽  
Taihei Fujimori ◽  
Hidenori Hashimura ◽  
Mitsuru J. Nakamura ◽  
...  

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.


Author(s):  
Jianzhong Sun ◽  
Heng Jiang ◽  
Caiqiong Yang ◽  
Ruochen Liu

Particle ingestion into a gas turbine can have serious effects on both performance and engine in-service reliability. Thus there exists a need for in situ monitoring and characterizing particulate matter entering an aircraft engine inlet for the purposes of engine damages estimation and prognosis. This paper presents the initial development of Ingested Debris Monitoring System (IDMS) signal processing method of characterizing the ingested particles. A theoretical analysis and simulation study were carried out to study the relationships between the characteristics of the ingested sand particles and the features of the IDMS signal both in frequency- and time-domain. A Finite-Element Modeling (FEM) for the IDMS Sensor was developed, then the validated FEM modeling was used for simulation experiments of particles ingestion under various conditions of different particle moving speeds, concentrations and charge-to-mass ratios. Results of the theoretical analysis and simulation study demonstrates the feasibility and effectiveness of the proposed method to provide real time information characterizing the size and concentration of ingested sand particles, and will serve as an impetus to carry out further research.


2021 ◽  
Author(s):  
Alessandro Vulpio ◽  
Alessio Suman ◽  
Nicola Casari ◽  
Michele Pinelli

Abstract Gas turbine particle ingestion may lead to the deposition of contaminants in the compressor section, inducing the performance losses of the whole engine. The economic losses derived from this issue push great interest in the investigation of such a phenomenon from a numerical and experimental standpoint. This paper describes a quantitative approach to predict particle deposition on the vanes of an axial compressor starting from the flow field obtained employing CFD simulations. The results are then compared to the experiments performed on the Allison 250 C18 compressor unit subject to particle ingestion under controlled conditions. The results derived from the experimental and numerical investigations are presented, providing insight into the mass deposited on the vanes and the corresponding zones most affected by the particle deposition issue. The numerical model showed good agreement in the estimation of the predicted values of the deposited mass and the corresponding patterns through the compressor stages. The low-complexity approach proposed here, helps the designer to predict the contamination of the stationary rows starting from a simple set of single-phase numerical results. Furthermore, with the implementation of this approach into the design path, the designer could reduce the impact of fouling, looking at the effects of their solutions under the fouling-reduction light.


Author(s):  
Stefano Oliani ◽  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Mauro Carnevale

Abstract Particle ingestion is a major concern for the operation of gas turbines. In the case of an aircraft, particle dispersed in the air ingested by the engine can threaten flight safety. Swallowed particles can erode or stick to aerodynamic surfaces. Both the occurrences translate in a reduction of performance due to variation in shape and in roughness of the aerodynamic surfaces. This work is devoted to the analysis of fouling, i.e. the deposition of particles over time. By observing that the deposition pattern is strongly influenced by the flow field in the nearby of the walls, the central idea of this work is to employ Active Flow Control (AFC) to mitigate fouling when emergency conditions are met by the aircraft. The proposed system will inject air bled from compressor discharge in front of the critical locations where fouling is supposed to occur. The present work aspires to lay the foundations for the development of such an AFC device, by focusing on the modified aerodynamics consequent to the introduction of the transverse jet. The potential of this device is evaluated quantitatively using CFD simulations. An energy-based sticking model, coupled with a mesh-morphing solver, is used to track the airfoil deposition thickness evolution in time. The work is two-fold: first, the dynamics of the interaction between flow structures and particle transport is addressed. Second, the attention is posed on correlating fouling pattern variation to the modified aerodynamics of the vane consequent to the introduction of the device. Three design concepts are investigated on the 3D test case geometry of an HPT NGV cascade. The counter-rotating vortex pair (CVP) is detected as the main responsible for jet-particle interaction. Finally, the jet impact on aerodynamic performance is also assessed.


2020 ◽  
Vol 8 (7) ◽  
pp. 1039
Author(s):  
Narcis I. Popescu ◽  
Ravi S. Keshari ◽  
Jackie Cochran ◽  
K. Mark Coggeshall ◽  
Florea Lupu

Neutrophils are the most abundant innate cell population and a key immune player against invading pathogens. Neutrophils can kill both bacterium and spores of Bacillus anthracis, the causative anthrax pathogen. Unlike interactions with professional phagocytes, the molecular recognition of anthrax by neutrophils is largely unknown. In this study, we investigated the role of complement C3 deposition on anthrax particles for neutrophil recognition of bacterium and/or its cell wall peptidoglycan, an abundant pathogen-associated molecular pattern that supports anthrax sepsis. C3 opsonization and recognition by complement receptors accounted for 70–80% of the affinity interactions between neutrophils and anthrax particles at subphysiologic temperatures. In contrast, C3 supported up to 50% of the anthrax particle ingestion under thermophysiologic conditions. Opsonin-dependent low affinity interactions and, to a lower extent, opsonin-independent mechanisms, provide alternative entry routes. Similarly, C3 supported 58% of peptidoglycan-induced degranulation and, to a lower extent, 23% of bacterium-induced degranulation. Interestingly, an opsonin independent mechanism mediated by complement C5, likely through C5a anaphylatoxin, primes azurophilic granules in response to anthrax particles. Overall, we show that C3 deposition supports anthrax recognition by neutrophils but is dispensable for pathogen ingestion and neutrophil degranulation, highlighting immune recognition redundancies that minimize the risk of pathogen evasion.


2019 ◽  
Vol 53 (22) ◽  
pp. 12974-12988 ◽  
Author(s):  
France Collard ◽  
Johnny Gasperi ◽  
Geir W. Gabrielsen ◽  
Bruno Tassin

2018 ◽  
Vol 119 ◽  
pp. 125-132 ◽  
Author(s):  
Jie Wang ◽  
Kunde Lin ◽  
Allison Taylor ◽  
Jay Gan

Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Devid Dainese ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
...  

Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the micro-particles not captured by the air filtration system can cause deposits on blades and, consequently, can result in a decrease in compressor performance. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. However, this information often refers to single stage analysis. This paper presents three-dimensional numerical simulations of the micro-particle ingestion (0.15 μm – 1.50 μm) in a multistage (i.e. eight stage) subsonic axial compressor, carried out by means of a commercial CFD code. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The effects of humidity, or more generally, the effects of a third substance at the particle/surface interface (which is considered one of the major promoters of fouling) is then studied. The behavior of wet and oiled particles, in addition to the usual dry particles, is taken into consideration. In the dry case, the particle deposition is established only by using the sticking probability. This quantity links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. In the other two cases, the effect of the presence of a third substance at the particle/surface interface is considered by means of an energy-based model. Moreover, the influence of the tangential impact velocity on particle deposition is analyzed. Introducing the effect of a third substance, such as humidity or oil, the phenomenon of fouling concerns the same areas of the multistage compressor. The most significant results are obtained by combining the effect of the third substance with the effect of the tangential component of the impact velocity of the particles. The deposition trends obtained with these conditions are comparable with those reported in literature, highlighting how the deposits are mainly concentrated in the early stages of a multistage compressor. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the location of particle deposits.


Sign in / Sign up

Export Citation Format

Share Document