impact velocity
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 169)

H-INDEX

40
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-28
Author(s):  
Y. H. Kim ◽  
S. H. Chow ◽  
M. S. Hossain ◽  
J. Zhao ◽  
S. Rohan

This paper reports the results from field tests on a 1/15th scale recently developed fish anchor. The tests were conducted at three locations in the Swan River, Perth. Two series of tests were performed from the Burswood and Maylands jetties with water depths between 1.1 and 1.9 m. The final series of tests were undertaken in deeper waters of 2.6 m from a barge. The riverbed at the Burswood Jetty and barge test location consisted of soft clay, and that at the Maylands Jetty comprised sandy silt. The tip embedment depths of the scaled fish anchor, with dry weight of 0.304 kN and impact velocity of 5.89∼9.55 m/s, in soft clay were 1.17∼2.40 times the anchor length. For similar impact velocities, the tip embedment depths in sandy silt were 30 ∼ 60% shallower than those in soft clay. By comparing the field test data in clay, the fish anchor achieved normalised embedment depths similar to those of the torpedo and OMNI-Max anchors under half or less impact velocity. Most importantly, the field tests confirmed the diving behaviour of the fish anchor under loading with mudline inclination of 20° and 25°, with the second peak dictated the capacity. The ultimate capacity was 5∼7 times the anchor submerged weight in water.


2022 ◽  
Author(s):  
Wenjie Liu ◽  
Ke Yang ◽  
Litong Dou ◽  
Zhen Wei ◽  
Xiaolou Chi ◽  
...  

Abstract To explore the dynamic mechanical characteristics of coal-rock combined body (CRCB) load-bearing structures, impact tests were performed on CRCB specimens by using a separated Hopkinson pressure bar test device (SHPB) combined with an ultra-high-speed camera system. The propagation characteristics of stress wave , dynamic stress-strain relationship, energy evolution law, and distribution characteristics of CRCB crushed particles in the impact tests were analyzed. The obtained results showed that: with the increasing of impact velocity, the effect of the wave impedance difference between the CRCB specimens and incident bar on stress wave propagation is gradually weakened. The peak strength (sII) and peak strain of the CRCB had obvious strain-rate effects, the ratio of reflected energy decreases linearly. In addition, with increased impact velocity, the growth rate of the peak strength and ratio of absorbed energy gradually dropped, changing approximately as a power function. Macro-fractures of the CRCB mainly occurred at the coal or rock ends which is far away from the interface. When the stress at the crack tip is greater than the "weakened" coal or rock strength, the crack will continue to develop across the coal and rock interface. With the increasing of impact velocity and rock strength, the crushed coal particles gradually transform from massive to powdering, and the average size of crushed coal blocks decreases, which leads to a gradual increase in the fractal dimension of the CRCB specimens. Therefore, the monitoring and prevention of dynamic loads should be strengthened in the coal mines with thick and hard roofs.


2022 ◽  
Vol 92 (3) ◽  
pp. 392
Author(s):  
С.И. Герасимов ◽  
Ю.Ф. Травов ◽  
А.Г. Иоилев ◽  
В.В. Писецкий ◽  
Н.Н. Травова ◽  
...  

Results of computations with the use of improved modified Alekseevskii-Tate theory (IMATT) are compared to experimental data on high-velocity penetration of long rod projectiles into sand in the impact velocity range of V0=0.5-3.5 km/s. Projectiles were made of three different metals: M1 copper, WNZh tungsten heavy alloy and 30KhGSA steel. The value of hardening coefficient k in the linear dependence of the projectile material yield on pressure could be determined using IMATT and experimental data on dependence of differential penetration coefficient K on the penetration velocity. At penetration in regime of the hydrodynamic erosion of projectile, differential penetration coefficient K could be approximated just by dependence on the ratio of the impact velocity of penetration to the value of the critical velocity, above which the projectile deforms plastically during penetration. The values of the critical velocity may differ for specific projectile material properties as well as the density and the humidity of sand.


Author(s):  
C.D. Reddy ◽  
Zhi-Qian Zhang ◽  
S. Msolli ◽  
Junyan Guo ◽  
N. Sridhar

Author(s):  
Nayyer Mohammadi Rana ◽  
Elham Ghandi ◽  
Shirin Esmaeili Niari

In recent years, the use of partially concrete-filled steel tubular (PCFST) columns has been considered due to their cost-effectiveness and reduction of structural weight in bridge piers and building columns. One of the critical discussions about these columns is their impact resistance. In this article, the dynamic response of hollow and PCFST columns with elliptical cross-section under simultaneous loading of static axial compressive load and lateral impact load is presented using finite element modeling in ABAQUS software (FEA). To ensure the accuracy of the numerical modeling, the analysis results are compared with the results of previous works. The effects of different parameters such as impact velocity, the height of the impact location, the impact direction, the impact block mass, the size and shape of the impact block are investigated in this paper. The results of the numerical analysis showed that the partially filled specimens had better performance than the hollow specimens. The changes in impact direction and impact block mass parameters have a significant effect on the failure of the columns, especially when they are under high impact velocity. Changing the impact velocity significantly affects the impact resistance of specimens. However, the size and shape of the impact block did not have a significant effect on the displacement of the column against the impact loading.


2021 ◽  
Vol 14 (4) ◽  
pp. 2007-2012
Author(s):  
Pavel Nikolaevich Kuznetsov

Purpose of the present research is to improve the quality of cleaning sugar beetroot crops with a brush cleaner by developing a device for removing stuck soil. The article defines the dependence of the impact velocity on the distance to the place of impact, which changes linearly, increasing with increasing distance to the place of impact. Analysis of the dependence shows that the speed can be most significantly influenced by the speed of the conveyor and the radius of the trajectory of the end of the bending lint, which directly depends on the diameter of the cylindrical brush. Nomogram was obtained to determine the most optimal parameters of the impact site on the lint. When conducting studies with heavy loamy chernozem soils with a moisture content of ≈28%, it revealed that the minimum required brush lint impact velocity to separate soil from the coils of the spring is about ≈ 2.5 m/s. The analysis of the dependence shows that the most effective cleaning of the brush lint from the stuck soil (90-98%) occurs when a blow is applied at a distance of 40 to 78 mm from the place of attachment of the lint with a lint length of 100 mm. The impact velocity of the brush lint should be large enough to separate the soil of maximum stickiness from the coil of the spring, however, it should not be greater than the speed causing lint cutting, i.e. the speed at which the brush lint are destroyed.


2021 ◽  
pp. 152808372110642
Author(s):  
Sachin Tejyan

Abrasive particle-induced erosive wear of polymeric engineering components is a major industrial issue. The research of solid particle erosion characteristics of polymeric composites becomes essential due to operational needs in dusty conditions. Nonwovens are now employed in industrial applications for polymeric composites. Nonwoven products are made from a wide range of raw materials, ranging from synthetic to natural fibers. This work finding the effect of nonwoven cotton fiber (5, 10, and 15 wt.%) loading on the physical, mechanical, and erosion wear of fixed wooden dust (4 wt.%) filled hybrid epoxy composites. Experimental results reveal improved impact strength, hardness, and compressive and tensile strength with an increment of fiber loading from 5–15 wt.%. The density of the composites was found to increase, whereas void content decreases with an increase in cotton fiber. The erosion wear of the composites has been studied using an L27 orthogonal array to assess the effects of various parameters such as fiber loading, erodent size, impact velocity, impingement angle, and stand-off distance. The erosion wear increased with impact velocity and remained highest for 60° of impingement angle. The most significant parameter affecting the erosion wear was determined as impact velocity followed by impingement angle. Surface morphologies of eroded samples reveal the fiber pull-out, and fiber breakage was the prominent phenomenon for the erosion wear of the evaluated composites.


Author(s):  
Guibing Li ◽  
Jinming Liu ◽  
Kui Li ◽  
Hui Zhao ◽  
Liangliang Shi ◽  
...  

Head-to-vehicle contact boundary condition and criteria and corresponding thresholds of head injuries are crucial in evaluation of vehicle safety performance for pedestrian protection, which need a constantly updated understanding of pedestrian head kinematic response and injury risk in real-world collisions. Thus, the purpose of the current study is to investigate the characteristics of pedestrian head-to-vehicle contact boundary condition and pedestrian AIS3+ (Abbreviated Injury Scale) head injury risk as functions of kinematic-based criteria, including HIC (Head Injury Criterion), HIP (Head Impact Power), GAMBIT (Generalized Acceleration Model for Brain Injury Threshold), RIC (Rotational Injury Criterion), and BrIC (Brain Injury Criteria), in real-world collisions. To achieve this, 57 vehicle-to-pedestrian collision cases were employed, and a multi-body modeling approach was applied to reconstruct pedestrian kinematics in these real-world collisions. The results show that head-to-windscreen contacts are dominant in pedestrian collisions of the analysis sample and that head WAD (Wrap Around Distance) floats from 1.5 to 2.3 m, with a mean value of 1.84 m; 80% of cases have a head linear contact velocity below 45 km/h or an angular contact velocity less than 40 rad/s; pedestrian head linear contact velocity is on average 83 ± 23% of the vehicle impact velocity, while the head angular contact velocity (in rad/s) is on average 75 ± 25% of the vehicle impact velocity in km/h; 77% of cases have a head contact time in the range 50–140 ms, and negative and positive linear correlations are observed for the relationships between pedestrian head contact time and WAD/height ratio and vehicle impact velocity, respectively; 70% of cases have a head contact angle floating from 40° to 70°, with an average value of 53°; the pedestrian head contact angles on windscreens (average = 48°) are significantly lower than those on bonnets (average = 60°); the predicted thresholds of HIC, HIP, GAMBIT, RIC, BrIC2011, and BrIC2013 for a 50% probability of AIS3+ head injury risk are 1,300, 60 kW, 0.74, 1,470 × 104, 0.56, and 0.57, respectively. The findings of the current work could provide realistic reference for evaluation of vehicle safety performance focusing on pedestrian protection.


Sign in / Sign up

Export Citation Format

Share Document