Effects of Wakes on Blade Endwall Heat Transfer in High Turbulence Intensity

Author(s):  
Sehjin Park ◽  
Ho-Seong Sohn ◽  
Hyung Hee Cho ◽  
Hee Koo Moon ◽  
Yang Seok Han ◽  
...  

Abstract Different types of vortices, such as horseshoe vortex, passage vortex, corner vortex, cause high heat transfer distributions and complex heat transfer characteristics at the endwall of turbine blades. In addition, the endwall heat transfer is also affected when the main flow is highly turbulent and wakes are generated by the trailing edge of the vane. Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (Turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity, but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2%, 7.5%) in the cases with wakes (Rod passing Strouhal number, S = 0.3). This means that the flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%.

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sehjin Park ◽  
Ho-Seong Sohn ◽  
Hyung Hee Cho ◽  
Hee Koo Moon ◽  
Yang Seok Han ◽  
...  

Abstract Detailed heat transfer measurements are necessary to protect the blades under harsh and complex flow conditions. Therefore, this study investigated the heat transfer characteristics on the blade endwall under flow conditions that simulate high turbulence intensity of the main flow and the generation of wakes by the trailing edge of the vane. The endwall heat transfer was measured using the naphthalene sublimation method. A turbulence generating grid was installed in a linear cascade to simulate the main flow with high turbulence intensity and a wake generator with a rod bundle was used to simulate the wakes generated by the trailing edge of the vane. In the case of high turbulence intensity without wakes, the main flow with high turbulence intensity (turbulence intensity, T.I = 7.5%) had little impact on the effect of the horseshoe vortex and passage vortex on the heat transfer characteristics. However, increasing turbulence caused the endwall heat transfer to decrease near the pressure side of the blade and increase near the suction side of the blade. On the other hand, the wakes resulted in heat transfer characteristics similar to high turbulence intensity but decreased heat transfer by horseshoe vortex and passage vortex. The endwall heat transfer distributions were similar regardless of the turbulence intensity (T.I = 1.2% and 7.5%) in the cases with wakes (rod passing Strouhal number, S = 0.3). The flow condition of S = 0.3 has a more significant influence on the endwall heat transfer than that of T.I = 7.5%.


Author(s):  
Sridhar Murari ◽  
Sunnam Sathish ◽  
Ramakumar Bommisetty ◽  
Jong S. Liu

The knowledge of heat loads on the turbine is of great interest to turbine designers. Turbulence intensity and stator-rotor axial gap plays a key role in affecting the heat loads. Flow field and associated heat transfer characteristics in turbines are complex and unsteady. Computational fluid dynamics (CFD) has emerged as a powerful tool for analyzing these complex flow systems. Honeywell has been exploring the use of CFD tools for analysis of flow and heat transfer characteristics of various gas turbine components. The current study has two objectives. The first objective aims at development of CFD methodology by validation. The commercially available CFD code Fine/Turbo is used to validate the predicted results against the benchmark experimental data. Predicted results of pressure coefficient and Stanton number distributions are compared with available experimental data of Dring et al. [1]. The second objective is to investigate the influence of turbulence (0.5% and 10% Tu) and axial gaps (15% and 65% of axial chord) on flow and heat transfer characteristics. Simulations are carried out using both steady state and harmonic models. Turbulence intensity has shown a strong influence on turbine blade heat transfer near the stagnation region, transition and when the turbulent boundary layer is presented. Results show that a mixing plane is not able to capture the flow unsteady features for a small axial gap. Relatively close agreement is obtained with the harmonic model in these situations. Contours of pressure and temperature on the blade surface are presented to understand the behavior of the flow field across the interface.


Author(s):  
Zhiduo Wang ◽  
Wenhao Zhang ◽  
Zhaofang Liu ◽  
Chen Zhang ◽  
Zhenping Feng

In this paper, unsteady RANS simulations were performed at two hot streak (HS) circumferential positions with inlet turbulence intensity of 5% and 20%. The interacted HS and high mainstream turbulence effects on endwall heat transfer characteristics of a high-pressure (HP) turbine were discussed by analyzing the flow structures and presenting the endwall adiabatic wall temperature, heat transfer coefficient (HTC) and heat flux distributions. The results indicate that both the wall temperature and HTC increase with the turbulence intensity at most stator endwall regions. In addition, the increase of wall temperature plays a greater role than HTC of influencing the wall heat flux. However, higher turbulence intensity decreases the intensity of the stator passage horse-shoe vortex, also the corresponding region HTC and heat flux are reduced. In rotor passage, the variation of HS circumferential position would alter the hub and casing endwall temperature, however, the discrepancy is weakened at higher turbulence. The elevated HS attenuation at higher turbulence results in temperature augmentation at the leading edge of rotor hub and casing endwalls, while temperature decrease after 50% axial chord, thus obtains more uniform temperature distributions on the endwalls. However, the rotor endwall HTC is only augmented significantly at the leading edge on hub endwall, and pressure side and downstream of trailing edge on casing endwall. Variation of HTC and adiabatic wall temperature jointly determines the rotor hub and casing endwall heat flux, and the temperature variation has dominant effects in the most regions. In general, the variation of adiabatic wall temperature and HTC should be considered simultaneously when analyzing the turbine endwall heat transfer characteristics.


Author(s):  
Zhiqi Zhao ◽  
Lei Luo ◽  
Dandan Qiu ◽  
Xun Zhou ◽  
Zhongqi Wang

Abstract This paper numerically investigated the effect of the arrays of the delta-winglet vortex generators (DWVGs) pairs on the flow field and heat transfer characteristics of gas turbine blade tip internal surface. Six different arrangements including three inclinations (30°, 45°, 60°) and two aspect ratios of DWVGs are calculated at Reynolds numbers ranging from 6000 to 14,000. The internal cooling passage of gas turbines are simplified as two-pass U bend channel and the U bend channel without any tabulators are considered as Baseline. The detailed flow structure, the evolution of vortices and heat transfer performance over the tip internal surface are presented. The results show that the arrays of DWVGs placed on the tip internal surface have great influence on the tip flow and heat transfer. Small-scale vortices are induced by the DWVGs, which have negligible impact on the main flow. Due to the nature of 180-deg turn, the impingement-like flow contributes the highest heat transfer performance. But too many DWVGs placed on the attachment region will weaken the energy of main flow and therefore reduce the local heat transfer. Besides, the blocked DWVGs (BVG) will enhance the heat transfer at the center line, and the guided DWVGs (GVG) will extend the low-energy flow cluster and thus weakening the heat transfer intensity. The results of this study are useful for understanding the mechanism of heat transfer characteristics in a realistic gas turbine blade by using the arrays of DWVGs.


Sign in / Sign up

Export Citation Format

Share Document